Strong Homotopy Types, Nerves and Collapses

Autores
Barmak, Jonathan Ariel; Minian, Elias Gabriel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce the theory of strong homotopy types of simplicial complexes. Similarly to classical simple homotopy theory, the strong homotopy types can be described by elementary moves. An elementary move in this setting is called a strong collapse and it is a particular kind of simplicial collapse. The advantage of using strong collapses is the existence and uniqueness of cores and their relationship with the nerves of the complexes. From this theory we derive new results for studying simplicial collapsibility with a different point of view. We analyze vertex-transitive simplicial G-actions and prove a particular case of the Evasiveness conjecture for simplicial complexes. Moreover, we reduce the general conjecture to the class of minimal complexes. We also strengthen a result of V. Welker on the barycentric subdivision of collapsible complexes. We obtain this and other results on collapsibility of polyhedra by means of the characterization of the different notions of collapses in terms of finite topological spaces.
Fil: Barmak, Jonathan Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Simplicial Complexes
Simple Homotopy Types
Collapses
Nerves
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19894

id CONICETDig_f3bbe602c0524b57a5fe16604a8b2643
oai_identifier_str oai:ri.conicet.gov.ar:11336/19894
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Strong Homotopy Types, Nerves and CollapsesBarmak, Jonathan ArielMinian, Elias GabrielSimplicial ComplexesSimple Homotopy TypesCollapsesNerveshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce the theory of strong homotopy types of simplicial complexes. Similarly to classical simple homotopy theory, the strong homotopy types can be described by elementary moves. An elementary move in this setting is called a strong collapse and it is a particular kind of simplicial collapse. The advantage of using strong collapses is the existence and uniqueness of cores and their relationship with the nerves of the complexes. From this theory we derive new results for studying simplicial collapsibility with a different point of view. We analyze vertex-transitive simplicial G-actions and prove a particular case of the Evasiveness conjecture for simplicial complexes. Moreover, we reduce the general conjecture to the class of minimal complexes. We also strengthen a result of V. Welker on the barycentric subdivision of collapsible complexes. We obtain this and other results on collapsibility of polyhedra by means of the characterization of the different notions of collapses in terms of finite topological spaces.Fil: Barmak, Jonathan Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19894Barmak, Jonathan Ariel; Minian, Elias Gabriel; Strong Homotopy Types, Nerves and Collapses; Springer; Discrete And Computational Geometry; 47; 2; 3-2012; 301-3280179-53761432-0444CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00454-011-9357-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00454-011-9357-5info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0907.2954info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:54Zoai:ri.conicet.gov.ar:11336/19894instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:54.562CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Strong Homotopy Types, Nerves and Collapses
title Strong Homotopy Types, Nerves and Collapses
spellingShingle Strong Homotopy Types, Nerves and Collapses
Barmak, Jonathan Ariel
Simplicial Complexes
Simple Homotopy Types
Collapses
Nerves
title_short Strong Homotopy Types, Nerves and Collapses
title_full Strong Homotopy Types, Nerves and Collapses
title_fullStr Strong Homotopy Types, Nerves and Collapses
title_full_unstemmed Strong Homotopy Types, Nerves and Collapses
title_sort Strong Homotopy Types, Nerves and Collapses
dc.creator.none.fl_str_mv Barmak, Jonathan Ariel
Minian, Elias Gabriel
author Barmak, Jonathan Ariel
author_facet Barmak, Jonathan Ariel
Minian, Elias Gabriel
author_role author
author2 Minian, Elias Gabriel
author2_role author
dc.subject.none.fl_str_mv Simplicial Complexes
Simple Homotopy Types
Collapses
Nerves
topic Simplicial Complexes
Simple Homotopy Types
Collapses
Nerves
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce the theory of strong homotopy types of simplicial complexes. Similarly to classical simple homotopy theory, the strong homotopy types can be described by elementary moves. An elementary move in this setting is called a strong collapse and it is a particular kind of simplicial collapse. The advantage of using strong collapses is the existence and uniqueness of cores and their relationship with the nerves of the complexes. From this theory we derive new results for studying simplicial collapsibility with a different point of view. We analyze vertex-transitive simplicial G-actions and prove a particular case of the Evasiveness conjecture for simplicial complexes. Moreover, we reduce the general conjecture to the class of minimal complexes. We also strengthen a result of V. Welker on the barycentric subdivision of collapsible complexes. We obtain this and other results on collapsibility of polyhedra by means of the characterization of the different notions of collapses in terms of finite topological spaces.
Fil: Barmak, Jonathan Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We introduce the theory of strong homotopy types of simplicial complexes. Similarly to classical simple homotopy theory, the strong homotopy types can be described by elementary moves. An elementary move in this setting is called a strong collapse and it is a particular kind of simplicial collapse. The advantage of using strong collapses is the existence and uniqueness of cores and their relationship with the nerves of the complexes. From this theory we derive new results for studying simplicial collapsibility with a different point of view. We analyze vertex-transitive simplicial G-actions and prove a particular case of the Evasiveness conjecture for simplicial complexes. Moreover, we reduce the general conjecture to the class of minimal complexes. We also strengthen a result of V. Welker on the barycentric subdivision of collapsible complexes. We obtain this and other results on collapsibility of polyhedra by means of the characterization of the different notions of collapses in terms of finite topological spaces.
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19894
Barmak, Jonathan Ariel; Minian, Elias Gabriel; Strong Homotopy Types, Nerves and Collapses; Springer; Discrete And Computational Geometry; 47; 2; 3-2012; 301-328
0179-5376
1432-0444
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19894
identifier_str_mv Barmak, Jonathan Ariel; Minian, Elias Gabriel; Strong Homotopy Types, Nerves and Collapses; Springer; Discrete And Computational Geometry; 47; 2; 3-2012; 301-328
0179-5376
1432-0444
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00454-011-9357-5
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00454-011-9357-5
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0907.2954
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614209477804032
score 13.070432