Strong Homotopy Types, Nerves and Collapses
- Autores
- Barmak, Jonathan Ariel; Minian, Elias Gabriel
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce the theory of strong homotopy types of simplicial complexes. Similarly to classical simple homotopy theory, the strong homotopy types can be described by elementary moves. An elementary move in this setting is called a strong collapse and it is a particular kind of simplicial collapse. The advantage of using strong collapses is the existence and uniqueness of cores and their relationship with the nerves of the complexes. From this theory we derive new results for studying simplicial collapsibility with a different point of view. We analyze vertex-transitive simplicial G-actions and prove a particular case of the Evasiveness conjecture for simplicial complexes. Moreover, we reduce the general conjecture to the class of minimal complexes. We also strengthen a result of V. Welker on the barycentric subdivision of collapsible complexes. We obtain this and other results on collapsibility of polyhedra by means of the characterization of the different notions of collapses in terms of finite topological spaces.
Fil: Barmak, Jonathan Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Simplicial Complexes
Simple Homotopy Types
Collapses
Nerves - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19894
Ver los metadatos del registro completo
id |
CONICETDig_f3bbe602c0524b57a5fe16604a8b2643 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19894 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Strong Homotopy Types, Nerves and CollapsesBarmak, Jonathan ArielMinian, Elias GabrielSimplicial ComplexesSimple Homotopy TypesCollapsesNerveshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce the theory of strong homotopy types of simplicial complexes. Similarly to classical simple homotopy theory, the strong homotopy types can be described by elementary moves. An elementary move in this setting is called a strong collapse and it is a particular kind of simplicial collapse. The advantage of using strong collapses is the existence and uniqueness of cores and their relationship with the nerves of the complexes. From this theory we derive new results for studying simplicial collapsibility with a different point of view. We analyze vertex-transitive simplicial G-actions and prove a particular case of the Evasiveness conjecture for simplicial complexes. Moreover, we reduce the general conjecture to the class of minimal complexes. We also strengthen a result of V. Welker on the barycentric subdivision of collapsible complexes. We obtain this and other results on collapsibility of polyhedra by means of the characterization of the different notions of collapses in terms of finite topological spaces.Fil: Barmak, Jonathan Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19894Barmak, Jonathan Ariel; Minian, Elias Gabriel; Strong Homotopy Types, Nerves and Collapses; Springer; Discrete And Computational Geometry; 47; 2; 3-2012; 301-3280179-53761432-0444CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00454-011-9357-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00454-011-9357-5info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0907.2954info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:54Zoai:ri.conicet.gov.ar:11336/19894instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:54.562CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Strong Homotopy Types, Nerves and Collapses |
title |
Strong Homotopy Types, Nerves and Collapses |
spellingShingle |
Strong Homotopy Types, Nerves and Collapses Barmak, Jonathan Ariel Simplicial Complexes Simple Homotopy Types Collapses Nerves |
title_short |
Strong Homotopy Types, Nerves and Collapses |
title_full |
Strong Homotopy Types, Nerves and Collapses |
title_fullStr |
Strong Homotopy Types, Nerves and Collapses |
title_full_unstemmed |
Strong Homotopy Types, Nerves and Collapses |
title_sort |
Strong Homotopy Types, Nerves and Collapses |
dc.creator.none.fl_str_mv |
Barmak, Jonathan Ariel Minian, Elias Gabriel |
author |
Barmak, Jonathan Ariel |
author_facet |
Barmak, Jonathan Ariel Minian, Elias Gabriel |
author_role |
author |
author2 |
Minian, Elias Gabriel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Simplicial Complexes Simple Homotopy Types Collapses Nerves |
topic |
Simplicial Complexes Simple Homotopy Types Collapses Nerves |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce the theory of strong homotopy types of simplicial complexes. Similarly to classical simple homotopy theory, the strong homotopy types can be described by elementary moves. An elementary move in this setting is called a strong collapse and it is a particular kind of simplicial collapse. The advantage of using strong collapses is the existence and uniqueness of cores and their relationship with the nerves of the complexes. From this theory we derive new results for studying simplicial collapsibility with a different point of view. We analyze vertex-transitive simplicial G-actions and prove a particular case of the Evasiveness conjecture for simplicial complexes. Moreover, we reduce the general conjecture to the class of minimal complexes. We also strengthen a result of V. Welker on the barycentric subdivision of collapsible complexes. We obtain this and other results on collapsibility of polyhedra by means of the characterization of the different notions of collapses in terms of finite topological spaces. Fil: Barmak, Jonathan Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We introduce the theory of strong homotopy types of simplicial complexes. Similarly to classical simple homotopy theory, the strong homotopy types can be described by elementary moves. An elementary move in this setting is called a strong collapse and it is a particular kind of simplicial collapse. The advantage of using strong collapses is the existence and uniqueness of cores and their relationship with the nerves of the complexes. From this theory we derive new results for studying simplicial collapsibility with a different point of view. We analyze vertex-transitive simplicial G-actions and prove a particular case of the Evasiveness conjecture for simplicial complexes. Moreover, we reduce the general conjecture to the class of minimal complexes. We also strengthen a result of V. Welker on the barycentric subdivision of collapsible complexes. We obtain this and other results on collapsibility of polyhedra by means of the characterization of the different notions of collapses in terms of finite topological spaces. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19894 Barmak, Jonathan Ariel; Minian, Elias Gabriel; Strong Homotopy Types, Nerves and Collapses; Springer; Discrete And Computational Geometry; 47; 2; 3-2012; 301-328 0179-5376 1432-0444 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19894 |
identifier_str_mv |
Barmak, Jonathan Ariel; Minian, Elias Gabriel; Strong Homotopy Types, Nerves and Collapses; Springer; Discrete And Computational Geometry; 47; 2; 3-2012; 301-328 0179-5376 1432-0444 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00454-011-9357-5 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00454-011-9357-5 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0907.2954 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614209477804032 |
score |
13.070432 |