Equivalence of solutions for non-homogeneous p(x)-Laplace equationsy
- Autores
- Medina, Maria; Ochoa, Pablo Daniel
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We establish the equivalence between weak and viscosity solutions for non-homogeneous p(x)-Laplace equations with a right-hand side term depending on the spatial variable, the unknown, and its gradient. We employ inf- and sup-convolution techniques to state that viscosity solutions are also weak solutions, and comparison principles to prove the converse. The new aspects of the p(x)- Laplacian compared to the constant case are the presence of log-terms and the lack of the invariance under translations.
Fil: Medina, Maria. Universidad Autónoma de Madrid; España
Fil: Ochoa, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina - Materia
-
COMPARISON PRINCIPLE
NONLINEAR ELLIPTIC EQUATIONS
P(X)-LAPLACIAN
VISCOSITY SOLUTIONS
WEAK SOLUTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/219037
Ver los metadatos del registro completo
id |
CONICETDig_dfaf1f767fd6d80102006cb9b4156bba |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/219037 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Equivalence of solutions for non-homogeneous p(x)-Laplace equationsyMedina, MariaOchoa, Pablo DanielCOMPARISON PRINCIPLENONLINEAR ELLIPTIC EQUATIONSP(X)-LAPLACIANVISCOSITY SOLUTIONSWEAK SOLUTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We establish the equivalence between weak and viscosity solutions for non-homogeneous p(x)-Laplace equations with a right-hand side term depending on the spatial variable, the unknown, and its gradient. We employ inf- and sup-convolution techniques to state that viscosity solutions are also weak solutions, and comparison principles to prove the converse. The new aspects of the p(x)- Laplacian compared to the constant case are the presence of log-terms and the lack of the invariance under translations.Fil: Medina, Maria. Universidad Autónoma de Madrid; EspañaFil: Ochoa, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaAmerican Institute of Mathematical Sciences2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219037Medina, Maria; Ochoa, Pablo Daniel; Equivalence of solutions for non-homogeneous p(x)-Laplace equationsy; American Institute of Mathematical Sciences; Mathematics in Engineering; 5; 2; 1-2023; 1-192640-3501CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3934/mine.2023044info:eu-repo/semantics/altIdentifier/url/https://www.aimspress.com/article/doi/10.3934/mine.2023044?viewType=HTMLinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:09:11Zoai:ri.conicet.gov.ar:11336/219037instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:09:11.786CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Equivalence of solutions for non-homogeneous p(x)-Laplace equationsy |
title |
Equivalence of solutions for non-homogeneous p(x)-Laplace equationsy |
spellingShingle |
Equivalence of solutions for non-homogeneous p(x)-Laplace equationsy Medina, Maria COMPARISON PRINCIPLE NONLINEAR ELLIPTIC EQUATIONS P(X)-LAPLACIAN VISCOSITY SOLUTIONS WEAK SOLUTIONS |
title_short |
Equivalence of solutions for non-homogeneous p(x)-Laplace equationsy |
title_full |
Equivalence of solutions for non-homogeneous p(x)-Laplace equationsy |
title_fullStr |
Equivalence of solutions for non-homogeneous p(x)-Laplace equationsy |
title_full_unstemmed |
Equivalence of solutions for non-homogeneous p(x)-Laplace equationsy |
title_sort |
Equivalence of solutions for non-homogeneous p(x)-Laplace equationsy |
dc.creator.none.fl_str_mv |
Medina, Maria Ochoa, Pablo Daniel |
author |
Medina, Maria |
author_facet |
Medina, Maria Ochoa, Pablo Daniel |
author_role |
author |
author2 |
Ochoa, Pablo Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
COMPARISON PRINCIPLE NONLINEAR ELLIPTIC EQUATIONS P(X)-LAPLACIAN VISCOSITY SOLUTIONS WEAK SOLUTIONS |
topic |
COMPARISON PRINCIPLE NONLINEAR ELLIPTIC EQUATIONS P(X)-LAPLACIAN VISCOSITY SOLUTIONS WEAK SOLUTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We establish the equivalence between weak and viscosity solutions for non-homogeneous p(x)-Laplace equations with a right-hand side term depending on the spatial variable, the unknown, and its gradient. We employ inf- and sup-convolution techniques to state that viscosity solutions are also weak solutions, and comparison principles to prove the converse. The new aspects of the p(x)- Laplacian compared to the constant case are the presence of log-terms and the lack of the invariance under translations. Fil: Medina, Maria. Universidad Autónoma de Madrid; España Fil: Ochoa, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina |
description |
We establish the equivalence between weak and viscosity solutions for non-homogeneous p(x)-Laplace equations with a right-hand side term depending on the spatial variable, the unknown, and its gradient. We employ inf- and sup-convolution techniques to state that viscosity solutions are also weak solutions, and comparison principles to prove the converse. The new aspects of the p(x)- Laplacian compared to the constant case are the presence of log-terms and the lack of the invariance under translations. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/219037 Medina, Maria; Ochoa, Pablo Daniel; Equivalence of solutions for non-homogeneous p(x)-Laplace equationsy; American Institute of Mathematical Sciences; Mathematics in Engineering; 5; 2; 1-2023; 1-19 2640-3501 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/219037 |
identifier_str_mv |
Medina, Maria; Ochoa, Pablo Daniel; Equivalence of solutions for non-homogeneous p(x)-Laplace equationsy; American Institute of Mathematical Sciences; Mathematics in Engineering; 5; 2; 1-2023; 1-19 2640-3501 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3934/mine.2023044 info:eu-repo/semantics/altIdentifier/url/https://www.aimspress.com/article/doi/10.3934/mine.2023044?viewType=HTML |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980447083036672 |
score |
13.004268 |