On viscosity and weak solutions for non-homogeneous p-Laplace equations

Autores
Medina, María; Ochoa, Pablo Daniel
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this manuscript, we study the relation between viscosity and weak solutions for non-homogeneous p-Laplace equations with lower order term depending on $x$, $u$ and $abla u$. More precisely, we prove that any locally bounded viscosity solution constitutes a weak solution, extending results presented in Juutinen, Lindqvist and Manfredi cite{JLM}, and Julin and Juutinen cite{JJ}. Moreover, we provide a converse statement in the full case under extra assumptions on the data.
Fil: Medina, María. Pontificia Universidad Católica de Chile; Chile
Fil: Ochoa, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina
Materia
Quasilinear Equations with P-Laplacian
Weak Solutions
Viscosity Solutions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/67167

id CONICETDig_ad02916c27958b4140603724f7cf5246
oai_identifier_str oai:ri.conicet.gov.ar:11336/67167
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On viscosity and weak solutions for non-homogeneous p-Laplace equationsMedina, MaríaOchoa, Pablo DanielQuasilinear Equations with P-LaplacianWeak SolutionsViscosity Solutionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this manuscript, we study the relation between viscosity and weak solutions for non-homogeneous p-Laplace equations with lower order term depending on $x$, $u$ and $abla u$. More precisely, we prove that any locally bounded viscosity solution constitutes a weak solution, extending results presented in Juutinen, Lindqvist and Manfredi cite{JLM}, and Julin and Juutinen cite{JJ}. Moreover, we provide a converse statement in the full case under extra assumptions on the data.Fil: Medina, María. Pontificia Universidad Católica de Chile; ChileFil: Ochoa, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentinade Gruyter2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67167Medina, María; Ochoa, Pablo Daniel; On viscosity and weak solutions for non-homogeneous p-Laplace equations; de Gruyter; Advances in Nonlinear Analysis; 4-2017; 1-172191-9496CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1515/anona-2017-0005info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/anona.ahead-of-print/anona-2017-0005/anona-2017-0005.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:53Zoai:ri.conicet.gov.ar:11336/67167instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:54.052CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On viscosity and weak solutions for non-homogeneous p-Laplace equations
title On viscosity and weak solutions for non-homogeneous p-Laplace equations
spellingShingle On viscosity and weak solutions for non-homogeneous p-Laplace equations
Medina, María
Quasilinear Equations with P-Laplacian
Weak Solutions
Viscosity Solutions
title_short On viscosity and weak solutions for non-homogeneous p-Laplace equations
title_full On viscosity and weak solutions for non-homogeneous p-Laplace equations
title_fullStr On viscosity and weak solutions for non-homogeneous p-Laplace equations
title_full_unstemmed On viscosity and weak solutions for non-homogeneous p-Laplace equations
title_sort On viscosity and weak solutions for non-homogeneous p-Laplace equations
dc.creator.none.fl_str_mv Medina, María
Ochoa, Pablo Daniel
author Medina, María
author_facet Medina, María
Ochoa, Pablo Daniel
author_role author
author2 Ochoa, Pablo Daniel
author2_role author
dc.subject.none.fl_str_mv Quasilinear Equations with P-Laplacian
Weak Solutions
Viscosity Solutions
topic Quasilinear Equations with P-Laplacian
Weak Solutions
Viscosity Solutions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this manuscript, we study the relation between viscosity and weak solutions for non-homogeneous p-Laplace equations with lower order term depending on $x$, $u$ and $abla u$. More precisely, we prove that any locally bounded viscosity solution constitutes a weak solution, extending results presented in Juutinen, Lindqvist and Manfredi cite{JLM}, and Julin and Juutinen cite{JJ}. Moreover, we provide a converse statement in the full case under extra assumptions on the data.
Fil: Medina, María. Pontificia Universidad Católica de Chile; Chile
Fil: Ochoa, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Económicas; Argentina
description In this manuscript, we study the relation between viscosity and weak solutions for non-homogeneous p-Laplace equations with lower order term depending on $x$, $u$ and $abla u$. More precisely, we prove that any locally bounded viscosity solution constitutes a weak solution, extending results presented in Juutinen, Lindqvist and Manfredi cite{JLM}, and Julin and Juutinen cite{JJ}. Moreover, we provide a converse statement in the full case under extra assumptions on the data.
publishDate 2017
dc.date.none.fl_str_mv 2017-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/67167
Medina, María; Ochoa, Pablo Daniel; On viscosity and weak solutions for non-homogeneous p-Laplace equations; de Gruyter; Advances in Nonlinear Analysis; 4-2017; 1-17
2191-9496
CONICET Digital
CONICET
url http://hdl.handle.net/11336/67167
identifier_str_mv Medina, María; Ochoa, Pablo Daniel; On viscosity and weak solutions for non-homogeneous p-Laplace equations; de Gruyter; Advances in Nonlinear Analysis; 4-2017; 1-17
2191-9496
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1515/anona-2017-0005
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/anona.ahead-of-print/anona-2017-0005/anona-2017-0005.xml
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv de Gruyter
publisher.none.fl_str_mv de Gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270175133433856
score 13.13397