Review: A Survey of performance and techniques for automatic epilepsy detection
- Autores
- Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Laciar Leber, Eric
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Epilepsy is a chronic neurological disorder of the brain that affects around 50 million people worldwide. The early detection of epileptic seizures using electroencephalogram (EEG) signals is a useful tool for several applications in epilepsy diagnosis. Many techniques have been developed for unscrambling the underlying features of seizures present in EEGs. This article reviews the seizure detection algorithms developed in the last decade. In general terms, techniques based on the wavelet transform, entropy, tensors, empirical mode decomposition, chaos theory, and dynamic analysis are surveyed in the field of epilepsy detection. A performance comparison of the reviewed algorithms is also conducted. The needs for a reliable practical implementation are highlighted and some future prospectives in the area are given. Epilepsy detection research is oriented to develop non-invasive and precise methods to allow precise and quick diagnoses. Finally, the lack of standardization of the methods in the epileptic seizure detection field is an emerging problem that has to be solved to allow homogenous comparisons of detector performance.
Fil: Orosco, Lorena Liliana. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Epilepsy
Seizure Detection Algorithm
Performance - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/26634
Ver los metadatos del registro completo
id |
CONICETDig_dee6f01516f0c177a3f9573790997080 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/26634 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Review: A Survey of performance and techniques for automatic epilepsy detectionOrosco, Lorena LilianaGarces Correa, Maria AgustinaLaciar Leber, EricEpilepsySeizure Detection AlgorithmPerformanceEpilepsy is a chronic neurological disorder of the brain that affects around 50 million people worldwide. The early detection of epileptic seizures using electroencephalogram (EEG) signals is a useful tool for several applications in epilepsy diagnosis. Many techniques have been developed for unscrambling the underlying features of seizures present in EEGs. This article reviews the seizure detection algorithms developed in the last decade. In general terms, techniques based on the wavelet transform, entropy, tensors, empirical mode decomposition, chaos theory, and dynamic analysis are surveyed in the field of epilepsy detection. A performance comparison of the reviewed algorithms is also conducted. The needs for a reliable practical implementation are highlighted and some future prospectives in the area are given. Epilepsy detection research is oriented to develop non-invasive and precise methods to allow precise and quick diagnoses. Finally, the lack of standardization of the methods in the epileptic seizure detection field is an emerging problem that has to be solved to allow homogenous comparisons of detector performance.Fil: Orosco, Lorena Liliana. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaInstitute of Biomedical Engineering2013-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26634Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Laciar Leber, Eric; Review: A Survey of performance and techniques for automatic epilepsy detection; Institute of Biomedical Engineering; Journal of Medical and Biological Engineering; 33; 6; 12-2013; 526-5371609-09852199-4757CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.jmbe.org.tw/index.php?action=archives2&no=2027info:eu-repo/semantics/altIdentifier/doi/10.5405/jmbe.1463info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:07Zoai:ri.conicet.gov.ar:11336/26634instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:07.521CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Review: A Survey of performance and techniques for automatic epilepsy detection |
title |
Review: A Survey of performance and techniques for automatic epilepsy detection |
spellingShingle |
Review: A Survey of performance and techniques for automatic epilepsy detection Orosco, Lorena Liliana Epilepsy Seizure Detection Algorithm Performance |
title_short |
Review: A Survey of performance and techniques for automatic epilepsy detection |
title_full |
Review: A Survey of performance and techniques for automatic epilepsy detection |
title_fullStr |
Review: A Survey of performance and techniques for automatic epilepsy detection |
title_full_unstemmed |
Review: A Survey of performance and techniques for automatic epilepsy detection |
title_sort |
Review: A Survey of performance and techniques for automatic epilepsy detection |
dc.creator.none.fl_str_mv |
Orosco, Lorena Liliana Garces Correa, Maria Agustina Laciar Leber, Eric |
author |
Orosco, Lorena Liliana |
author_facet |
Orosco, Lorena Liliana Garces Correa, Maria Agustina Laciar Leber, Eric |
author_role |
author |
author2 |
Garces Correa, Maria Agustina Laciar Leber, Eric |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Epilepsy Seizure Detection Algorithm Performance |
topic |
Epilepsy Seizure Detection Algorithm Performance |
dc.description.none.fl_txt_mv |
Epilepsy is a chronic neurological disorder of the brain that affects around 50 million people worldwide. The early detection of epileptic seizures using electroencephalogram (EEG) signals is a useful tool for several applications in epilepsy diagnosis. Many techniques have been developed for unscrambling the underlying features of seizures present in EEGs. This article reviews the seizure detection algorithms developed in the last decade. In general terms, techniques based on the wavelet transform, entropy, tensors, empirical mode decomposition, chaos theory, and dynamic analysis are surveyed in the field of epilepsy detection. A performance comparison of the reviewed algorithms is also conducted. The needs for a reliable practical implementation are highlighted and some future prospectives in the area are given. Epilepsy detection research is oriented to develop non-invasive and precise methods to allow precise and quick diagnoses. Finally, the lack of standardization of the methods in the epileptic seizure detection field is an emerging problem that has to be solved to allow homogenous comparisons of detector performance. Fil: Orosco, Lorena Liliana. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Epilepsy is a chronic neurological disorder of the brain that affects around 50 million people worldwide. The early detection of epileptic seizures using electroencephalogram (EEG) signals is a useful tool for several applications in epilepsy diagnosis. Many techniques have been developed for unscrambling the underlying features of seizures present in EEGs. This article reviews the seizure detection algorithms developed in the last decade. In general terms, techniques based on the wavelet transform, entropy, tensors, empirical mode decomposition, chaos theory, and dynamic analysis are surveyed in the field of epilepsy detection. A performance comparison of the reviewed algorithms is also conducted. The needs for a reliable practical implementation are highlighted and some future prospectives in the area are given. Epilepsy detection research is oriented to develop non-invasive and precise methods to allow precise and quick diagnoses. Finally, the lack of standardization of the methods in the epileptic seizure detection field is an emerging problem that has to be solved to allow homogenous comparisons of detector performance. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/26634 Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Laciar Leber, Eric; Review: A Survey of performance and techniques for automatic epilepsy detection; Institute of Biomedical Engineering; Journal of Medical and Biological Engineering; 33; 6; 12-2013; 526-537 1609-0985 2199-4757 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/26634 |
identifier_str_mv |
Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Laciar Leber, Eric; Review: A Survey of performance and techniques for automatic epilepsy detection; Institute of Biomedical Engineering; Journal of Medical and Biological Engineering; 33; 6; 12-2013; 526-537 1609-0985 2199-4757 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.jmbe.org.tw/index.php?action=archives2&no=2027 info:eu-repo/semantics/altIdentifier/doi/10.5405/jmbe.1463 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Biomedical Engineering |
publisher.none.fl_str_mv |
Institute of Biomedical Engineering |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613015740088320 |
score |
13.070432 |