A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals
- Autores
- Antonio Quintero, Rincón; Pereyra, Marcelo Fabián; D'Giano, Carlos; Batatia, Hadj; Risk, Marcelo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Appropriate diagnosis and treatment of epilepsy is a main public health issue. Patients suffering from this disease often exhibit different physical characterizations, which result from the synchronous and excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an important problem in biomedical signal processing. In this work we propose a new algorithm for seizure onset detection and spread estimation in epilepsy patients. The algorithm is based on a multilevel 1-D wavelet decomposition that captures the physiological brain frequency signals coupled with a generalized gaussian model. Preliminary experiments with signals from 30 epilepsy crisis and 11 subjects, suggest that the proposed methodology is a powerful tool for detecting the onset of epilepsy seizures with his spread across the brain.
Fil: Antonio Quintero, Rincón. Instituto Tecnológico de Buenos Aires; Argentina
Fil: Pereyra, Marcelo Fabián. University of Bristol; Reino Unido
Fil: D'Giano, Carlos. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina
Fil: Batatia, Hadj. Instituto Polytechnique de Toulouse; Francia. University of Toulouse; Francia
Fil: Risk, Marcelo. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
epilepsy
seizures
EEG - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/105953
Ver los metadatos del registro completo
| id |
CONICETDig_4b69cde2ebb0bc45908b40f6572cf4ec |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/105953 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signalsAntonio Quintero, RincónPereyra, Marcelo FabiánD'Giano, CarlosBatatia, HadjRisk, MarceloepilepsyseizuresEEGhttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2Appropriate diagnosis and treatment of epilepsy is a main public health issue. Patients suffering from this disease often exhibit different physical characterizations, which result from the synchronous and excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an important problem in biomedical signal processing. In this work we propose a new algorithm for seizure onset detection and spread estimation in epilepsy patients. The algorithm is based on a multilevel 1-D wavelet decomposition that captures the physiological brain frequency signals coupled with a generalized gaussian model. Preliminary experiments with signals from 30 epilepsy crisis and 11 subjects, suggest that the proposed methodology is a powerful tool for detecting the onset of epilepsy seizures with his spread across the brain.Fil: Antonio Quintero, Rincón. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Pereyra, Marcelo Fabián. University of Bristol; Reino UnidoFil: D'Giano, Carlos. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Batatia, Hadj. Instituto Polytechnique de Toulouse; Francia. University of Toulouse; FranciaFil: Risk, Marcelo. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaIOP Publishing2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/105953Antonio Quintero, Rincón; Pereyra, Marcelo Fabián; D'Giano, Carlos; Batatia, Hadj; Risk, Marcelo; A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals; IOP Publishing; Journal of Physics: Conference Series; 705; 4-2016; 1-111742-6596CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-6596/705/1/012032info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-6596/705/1/012032info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:18:59Zoai:ri.conicet.gov.ar:11336/105953instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:18:59.931CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals |
| title |
A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals |
| spellingShingle |
A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals Antonio Quintero, Rincón epilepsy seizures EEG |
| title_short |
A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals |
| title_full |
A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals |
| title_fullStr |
A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals |
| title_full_unstemmed |
A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals |
| title_sort |
A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals |
| dc.creator.none.fl_str_mv |
Antonio Quintero, Rincón Pereyra, Marcelo Fabián D'Giano, Carlos Batatia, Hadj Risk, Marcelo |
| author |
Antonio Quintero, Rincón |
| author_facet |
Antonio Quintero, Rincón Pereyra, Marcelo Fabián D'Giano, Carlos Batatia, Hadj Risk, Marcelo |
| author_role |
author |
| author2 |
Pereyra, Marcelo Fabián D'Giano, Carlos Batatia, Hadj Risk, Marcelo |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
epilepsy seizures EEG |
| topic |
epilepsy seizures EEG |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.6 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Appropriate diagnosis and treatment of epilepsy is a main public health issue. Patients suffering from this disease often exhibit different physical characterizations, which result from the synchronous and excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an important problem in biomedical signal processing. In this work we propose a new algorithm for seizure onset detection and spread estimation in epilepsy patients. The algorithm is based on a multilevel 1-D wavelet decomposition that captures the physiological brain frequency signals coupled with a generalized gaussian model. Preliminary experiments with signals from 30 epilepsy crisis and 11 subjects, suggest that the proposed methodology is a powerful tool for detecting the onset of epilepsy seizures with his spread across the brain. Fil: Antonio Quintero, Rincón. Instituto Tecnológico de Buenos Aires; Argentina Fil: Pereyra, Marcelo Fabián. University of Bristol; Reino Unido Fil: D'Giano, Carlos. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina Fil: Batatia, Hadj. Instituto Polytechnique de Toulouse; Francia. University of Toulouse; Francia Fil: Risk, Marcelo. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
Appropriate diagnosis and treatment of epilepsy is a main public health issue. Patients suffering from this disease often exhibit different physical characterizations, which result from the synchronous and excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an important problem in biomedical signal processing. In this work we propose a new algorithm for seizure onset detection and spread estimation in epilepsy patients. The algorithm is based on a multilevel 1-D wavelet decomposition that captures the physiological brain frequency signals coupled with a generalized gaussian model. Preliminary experiments with signals from 30 epilepsy crisis and 11 subjects, suggest that the proposed methodology is a powerful tool for detecting the onset of epilepsy seizures with his spread across the brain. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/105953 Antonio Quintero, Rincón; Pereyra, Marcelo Fabián; D'Giano, Carlos; Batatia, Hadj; Risk, Marcelo; A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals; IOP Publishing; Journal of Physics: Conference Series; 705; 4-2016; 1-11 1742-6596 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/105953 |
| identifier_str_mv |
Antonio Quintero, Rincón; Pereyra, Marcelo Fabián; D'Giano, Carlos; Batatia, Hadj; Risk, Marcelo; A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals; IOP Publishing; Journal of Physics: Conference Series; 705; 4-2016; 1-11 1742-6596 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-6596/705/1/012032 info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-6596/705/1/012032 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
IOP Publishing |
| publisher.none.fl_str_mv |
IOP Publishing |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847427080082423808 |
| score |
12.589754 |