Patient non-specific algorithm for seizures detection in scalp EEG

Autores
Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Diez, Pablo Federico; Laciar Leber, Eric
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Epilepsy is a brain disorder that affects about 1% of the population in the world. Seizure detection is an important component in both the diagnosis of epilepsy and seizure control. In this work a patient non-specific strategy for seizure detection based on Stationary Wavelet Transform of EEG signals is developed. A new set of features is proposed based on an average process. The seizure detection consisted in finding the EEG segments with seizures and their onset and offset points. The proposed offline method was tested in scalp EEG records of 24-48 h of duration of 18 epileptic patients. The method reached mean values of specificity of 99.9%, sensitivity of 87.5% and a false positive rate per hour of 0.9.
Fil: Orosco, Lorena Liliana. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Detection
Eeg
Epilepsy
Seizure
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/61282

id CONICETDig_d295b38889c72d59bb8bc43aba5b21b4
oai_identifier_str oai:ri.conicet.gov.ar:11336/61282
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Patient non-specific algorithm for seizures detection in scalp EEGOrosco, Lorena LilianaGarces Correa, Maria AgustinaDiez, Pablo FedericoLaciar Leber, EricDetectionEegEpilepsySeizurehttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2Epilepsy is a brain disorder that affects about 1% of the population in the world. Seizure detection is an important component in both the diagnosis of epilepsy and seizure control. In this work a patient non-specific strategy for seizure detection based on Stationary Wavelet Transform of EEG signals is developed. A new set of features is proposed based on an average process. The seizure detection consisted in finding the EEG segments with seizures and their onset and offset points. The proposed offline method was tested in scalp EEG records of 24-48 h of duration of 18 epileptic patients. The method reached mean values of specificity of 99.9%, sensitivity of 87.5% and a false positive rate per hour of 0.9.Fil: Orosco, Lorena Liliana. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaPergamon-Elsevier Science Ltd2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61282Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Diez, Pablo Federico; Laciar Leber, Eric; Patient non-specific algorithm for seizures detection in scalp EEG; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 71; 4-2016; 128-1340010-4825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compbiomed.2016.02.016info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0010482516300452info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:12Zoai:ri.conicet.gov.ar:11336/61282instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:12.423CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Patient non-specific algorithm for seizures detection in scalp EEG
title Patient non-specific algorithm for seizures detection in scalp EEG
spellingShingle Patient non-specific algorithm for seizures detection in scalp EEG
Orosco, Lorena Liliana
Detection
Eeg
Epilepsy
Seizure
title_short Patient non-specific algorithm for seizures detection in scalp EEG
title_full Patient non-specific algorithm for seizures detection in scalp EEG
title_fullStr Patient non-specific algorithm for seizures detection in scalp EEG
title_full_unstemmed Patient non-specific algorithm for seizures detection in scalp EEG
title_sort Patient non-specific algorithm for seizures detection in scalp EEG
dc.creator.none.fl_str_mv Orosco, Lorena Liliana
Garces Correa, Maria Agustina
Diez, Pablo Federico
Laciar Leber, Eric
author Orosco, Lorena Liliana
author_facet Orosco, Lorena Liliana
Garces Correa, Maria Agustina
Diez, Pablo Federico
Laciar Leber, Eric
author_role author
author2 Garces Correa, Maria Agustina
Diez, Pablo Federico
Laciar Leber, Eric
author2_role author
author
author
dc.subject.none.fl_str_mv Detection
Eeg
Epilepsy
Seizure
topic Detection
Eeg
Epilepsy
Seizure
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.6
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Epilepsy is a brain disorder that affects about 1% of the population in the world. Seizure detection is an important component in both the diagnosis of epilepsy and seizure control. In this work a patient non-specific strategy for seizure detection based on Stationary Wavelet Transform of EEG signals is developed. A new set of features is proposed based on an average process. The seizure detection consisted in finding the EEG segments with seizures and their onset and offset points. The proposed offline method was tested in scalp EEG records of 24-48 h of duration of 18 epileptic patients. The method reached mean values of specificity of 99.9%, sensitivity of 87.5% and a false positive rate per hour of 0.9.
Fil: Orosco, Lorena Liliana. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Epilepsy is a brain disorder that affects about 1% of the population in the world. Seizure detection is an important component in both the diagnosis of epilepsy and seizure control. In this work a patient non-specific strategy for seizure detection based on Stationary Wavelet Transform of EEG signals is developed. A new set of features is proposed based on an average process. The seizure detection consisted in finding the EEG segments with seizures and their onset and offset points. The proposed offline method was tested in scalp EEG records of 24-48 h of duration of 18 epileptic patients. The method reached mean values of specificity of 99.9%, sensitivity of 87.5% and a false positive rate per hour of 0.9.
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/61282
Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Diez, Pablo Federico; Laciar Leber, Eric; Patient non-specific algorithm for seizures detection in scalp EEG; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 71; 4-2016; 128-134
0010-4825
CONICET Digital
CONICET
url http://hdl.handle.net/11336/61282
identifier_str_mv Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Diez, Pablo Federico; Laciar Leber, Eric; Patient non-specific algorithm for seizures detection in scalp EEG; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 71; 4-2016; 128-134
0010-4825
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compbiomed.2016.02.016
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0010482516300452
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613094496534528
score 13.070432