Three solutions for a nonlocal problem with critical growth

Autores
Cantizano, Natalí Ailín; Silva, Analia
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The main goal of this work is to prove the existence of three different solutions (one positive, one negative and one with nonconstant sign) for the equation (−Δp)su=|u|ps ⁎−2u+λf(x,u) in a bounded domain with Dirichlet condition, where (−Δp)s is the well known p-fractional Laplacian and ps ⁎=np / n−sp is the critical Sobolev exponent for the non local case. The proof follows the ideas of [28] and is based in the extension of the Concentration Compactness Principle for the p-fractional Laplacian [20] and Ekeland´s variational Principle [7].
Fil: Cantizano, Natalí Ailín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Materia
CONCENTRATION COMPACTNESS
CRITICAL EXPONENTS
NON-LOCAL
SOBOLEV EMBEDDING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/113444

id CONICETDig_de9acd0c36aaadbdae1b7eca0dd39fdb
oai_identifier_str oai:ri.conicet.gov.ar:11336/113444
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Three solutions for a nonlocal problem with critical growthCantizano, Natalí AilínSilva, AnaliaCONCENTRATION COMPACTNESSCRITICAL EXPONENTSNON-LOCALSOBOLEV EMBEDDINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The main goal of this work is to prove the existence of three different solutions (one positive, one negative and one with nonconstant sign) for the equation (−Δp)su=|u|ps ⁎−2u+λf(x,u) in a bounded domain with Dirichlet condition, where (−Δp)s is the well known p-fractional Laplacian and ps ⁎=np / n−sp is the critical Sobolev exponent for the non local case. The proof follows the ideas of [28] and is based in the extension of the Concentration Compactness Principle for the p-fractional Laplacian [20] and Ekeland´s variational Principle [7].Fil: Cantizano, Natalí Ailín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaAcademic Press Inc Elsevier Science2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113444Cantizano, Natalí Ailín; Silva, Analia; Three solutions for a nonlocal problem with critical growth; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 469; 2; 1-2019; 841-8510022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2018.09.038info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022247X1830787Xinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1804.10699info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:57Zoai:ri.conicet.gov.ar:11336/113444instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:57.602CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Three solutions for a nonlocal problem with critical growth
title Three solutions for a nonlocal problem with critical growth
spellingShingle Three solutions for a nonlocal problem with critical growth
Cantizano, Natalí Ailín
CONCENTRATION COMPACTNESS
CRITICAL EXPONENTS
NON-LOCAL
SOBOLEV EMBEDDING
title_short Three solutions for a nonlocal problem with critical growth
title_full Three solutions for a nonlocal problem with critical growth
title_fullStr Three solutions for a nonlocal problem with critical growth
title_full_unstemmed Three solutions for a nonlocal problem with critical growth
title_sort Three solutions for a nonlocal problem with critical growth
dc.creator.none.fl_str_mv Cantizano, Natalí Ailín
Silva, Analia
author Cantizano, Natalí Ailín
author_facet Cantizano, Natalí Ailín
Silva, Analia
author_role author
author2 Silva, Analia
author2_role author
dc.subject.none.fl_str_mv CONCENTRATION COMPACTNESS
CRITICAL EXPONENTS
NON-LOCAL
SOBOLEV EMBEDDING
topic CONCENTRATION COMPACTNESS
CRITICAL EXPONENTS
NON-LOCAL
SOBOLEV EMBEDDING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The main goal of this work is to prove the existence of three different solutions (one positive, one negative and one with nonconstant sign) for the equation (−Δp)su=|u|ps ⁎−2u+λf(x,u) in a bounded domain with Dirichlet condition, where (−Δp)s is the well known p-fractional Laplacian and ps ⁎=np / n−sp is the critical Sobolev exponent for the non local case. The proof follows the ideas of [28] and is based in the extension of the Concentration Compactness Principle for the p-fractional Laplacian [20] and Ekeland´s variational Principle [7].
Fil: Cantizano, Natalí Ailín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
description The main goal of this work is to prove the existence of three different solutions (one positive, one negative and one with nonconstant sign) for the equation (−Δp)su=|u|ps ⁎−2u+λf(x,u) in a bounded domain with Dirichlet condition, where (−Δp)s is the well known p-fractional Laplacian and ps ⁎=np / n−sp is the critical Sobolev exponent for the non local case. The proof follows the ideas of [28] and is based in the extension of the Concentration Compactness Principle for the p-fractional Laplacian [20] and Ekeland´s variational Principle [7].
publishDate 2019
dc.date.none.fl_str_mv 2019-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/113444
Cantizano, Natalí Ailín; Silva, Analia; Three solutions for a nonlocal problem with critical growth; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 469; 2; 1-2019; 841-851
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/113444
identifier_str_mv Cantizano, Natalí Ailín; Silva, Analia; Three solutions for a nonlocal problem with critical growth; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 469; 2; 1-2019; 841-851
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2018.09.038
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022247X1830787X
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1804.10699
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614156786860032
score 13.070432