Three solutions for a nonlocal problem with critical growth
- Autores
- Cantizano, Natalí Ailín; Silva, Analia
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The main goal of this work is to prove the existence of three different solutions (one positive, one negative and one with nonconstant sign) for the equation (−Δp)su=|u|ps ⁎−2u+λf(x,u) in a bounded domain with Dirichlet condition, where (−Δp)s is the well known p-fractional Laplacian and ps ⁎=np / n−sp is the critical Sobolev exponent for the non local case. The proof follows the ideas of [28] and is based in the extension of the Concentration Compactness Principle for the p-fractional Laplacian [20] and Ekeland´s variational Principle [7].
Fil: Cantizano, Natalí Ailín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina - Materia
-
CONCENTRATION COMPACTNESS
CRITICAL EXPONENTS
NON-LOCAL
SOBOLEV EMBEDDING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/113444
Ver los metadatos del registro completo
id |
CONICETDig_de9acd0c36aaadbdae1b7eca0dd39fdb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/113444 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Three solutions for a nonlocal problem with critical growthCantizano, Natalí AilínSilva, AnaliaCONCENTRATION COMPACTNESSCRITICAL EXPONENTSNON-LOCALSOBOLEV EMBEDDINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The main goal of this work is to prove the existence of three different solutions (one positive, one negative and one with nonconstant sign) for the equation (−Δp)su=|u|ps ⁎−2u+λf(x,u) in a bounded domain with Dirichlet condition, where (−Δp)s is the well known p-fractional Laplacian and ps ⁎=np / n−sp is the critical Sobolev exponent for the non local case. The proof follows the ideas of [28] and is based in the extension of the Concentration Compactness Principle for the p-fractional Laplacian [20] and Ekeland´s variational Principle [7].Fil: Cantizano, Natalí Ailín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaAcademic Press Inc Elsevier Science2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113444Cantizano, Natalí Ailín; Silva, Analia; Three solutions for a nonlocal problem with critical growth; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 469; 2; 1-2019; 841-8510022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2018.09.038info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022247X1830787Xinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1804.10699info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:57Zoai:ri.conicet.gov.ar:11336/113444instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:57.602CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Three solutions for a nonlocal problem with critical growth |
title |
Three solutions for a nonlocal problem with critical growth |
spellingShingle |
Three solutions for a nonlocal problem with critical growth Cantizano, Natalí Ailín CONCENTRATION COMPACTNESS CRITICAL EXPONENTS NON-LOCAL SOBOLEV EMBEDDING |
title_short |
Three solutions for a nonlocal problem with critical growth |
title_full |
Three solutions for a nonlocal problem with critical growth |
title_fullStr |
Three solutions for a nonlocal problem with critical growth |
title_full_unstemmed |
Three solutions for a nonlocal problem with critical growth |
title_sort |
Three solutions for a nonlocal problem with critical growth |
dc.creator.none.fl_str_mv |
Cantizano, Natalí Ailín Silva, Analia |
author |
Cantizano, Natalí Ailín |
author_facet |
Cantizano, Natalí Ailín Silva, Analia |
author_role |
author |
author2 |
Silva, Analia |
author2_role |
author |
dc.subject.none.fl_str_mv |
CONCENTRATION COMPACTNESS CRITICAL EXPONENTS NON-LOCAL SOBOLEV EMBEDDING |
topic |
CONCENTRATION COMPACTNESS CRITICAL EXPONENTS NON-LOCAL SOBOLEV EMBEDDING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The main goal of this work is to prove the existence of three different solutions (one positive, one negative and one with nonconstant sign) for the equation (−Δp)su=|u|ps ⁎−2u+λf(x,u) in a bounded domain with Dirichlet condition, where (−Δp)s is the well known p-fractional Laplacian and ps ⁎=np / n−sp is the critical Sobolev exponent for the non local case. The proof follows the ideas of [28] and is based in the extension of the Concentration Compactness Principle for the p-fractional Laplacian [20] and Ekeland´s variational Principle [7]. Fil: Cantizano, Natalí Ailín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina |
description |
The main goal of this work is to prove the existence of three different solutions (one positive, one negative and one with nonconstant sign) for the equation (−Δp)su=|u|ps ⁎−2u+λf(x,u) in a bounded domain with Dirichlet condition, where (−Δp)s is the well known p-fractional Laplacian and ps ⁎=np / n−sp is the critical Sobolev exponent for the non local case. The proof follows the ideas of [28] and is based in the extension of the Concentration Compactness Principle for the p-fractional Laplacian [20] and Ekeland´s variational Principle [7]. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/113444 Cantizano, Natalí Ailín; Silva, Analia; Three solutions for a nonlocal problem with critical growth; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 469; 2; 1-2019; 841-851 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/113444 |
identifier_str_mv |
Cantizano, Natalí Ailín; Silva, Analia; Three solutions for a nonlocal problem with critical growth; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 469; 2; 1-2019; 841-851 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2018.09.038 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022247X1830787X info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1804.10699 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614156786860032 |
score |
13.070432 |