Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth
- Autores
- Silva, Analia
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this paper is to extend previous results regarding the multiplicity of solutions for quasilinear elliptic problems with critical growth to the variable exponent case. We prove, in the spirit of [4], the existence of at least three nontrivial solutions to the quasilinear elliptic equation −Δp(x)u = |u|q(x)−2u + λ f (x, u) in a smooth bounded domain Ω of RN with homogeneous Dirichlet boundary conditions on ∂Ω. We assume that {q(x) = p∗(x)} ≠ ø, where p∗(x) = Np(x)/(N − p(x)) is the critical Sobolev exponent for variable exponents and Δp(x)u = div(|∇u|p(x)−2∇u) is the p(x)−laplacian. The proof is based on variational arguments and the extension of concentration compactness method for variable exponent spaces.
Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
Concentration-Compactness Principle
Variable Exponent Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14926
Ver los metadatos del registro completo
id |
CONICETDig_9c9bc4c108c9f24cd47f541c60fc2cf9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14926 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiple Solutions for the p ( x ) − Laplace Operator with Critical GrowthSilva, AnaliaConcentration-Compactness PrincipleVariable Exponent Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The aim of this paper is to extend previous results regarding the multiplicity of solutions for quasilinear elliptic problems with critical growth to the variable exponent case. We prove, in the spirit of [4], the existence of at least three nontrivial solutions to the quasilinear elliptic equation −Δp(x)u = |u|q(x)−2u + λ f (x, u) in a smooth bounded domain Ω of RN with homogeneous Dirichlet boundary conditions on ∂Ω. We assume that {q(x) = p∗(x)} ≠ ø, where p∗(x) = Np(x)/(N − p(x)) is the critical Sobolev exponent for variable exponents and Δp(x)u = div(|∇u|p(x)−2∇u) is the p(x)−laplacian. The proof is based on variational arguments and the extension of concentration compactness method for variable exponent spaces.Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAdvanced Nonlinear Studies, Inc2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14926Silva, Analia; Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth; Advanced Nonlinear Studies, Inc; Advanced Nonlinear Studies; 11; 1; 1-2011; 63-751536-1365enginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.2011.11.issue-1/ans-2011-0103/ans-2011-0103.xmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/ans-2011-0103info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:15Zoai:ri.conicet.gov.ar:11336/14926instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:15.55CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth |
title |
Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth |
spellingShingle |
Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth Silva, Analia Concentration-Compactness Principle Variable Exponent Spaces |
title_short |
Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth |
title_full |
Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth |
title_fullStr |
Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth |
title_full_unstemmed |
Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth |
title_sort |
Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth |
dc.creator.none.fl_str_mv |
Silva, Analia |
author |
Silva, Analia |
author_facet |
Silva, Analia |
author_role |
author |
dc.subject.none.fl_str_mv |
Concentration-Compactness Principle Variable Exponent Spaces |
topic |
Concentration-Compactness Principle Variable Exponent Spaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The aim of this paper is to extend previous results regarding the multiplicity of solutions for quasilinear elliptic problems with critical growth to the variable exponent case. We prove, in the spirit of [4], the existence of at least three nontrivial solutions to the quasilinear elliptic equation −Δp(x)u = |u|q(x)−2u + λ f (x, u) in a smooth bounded domain Ω of RN with homogeneous Dirichlet boundary conditions on ∂Ω. We assume that {q(x) = p∗(x)} ≠ ø, where p∗(x) = Np(x)/(N − p(x)) is the critical Sobolev exponent for variable exponents and Δp(x)u = div(|∇u|p(x)−2∇u) is the p(x)−laplacian. The proof is based on variational arguments and the extension of concentration compactness method for variable exponent spaces. Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
The aim of this paper is to extend previous results regarding the multiplicity of solutions for quasilinear elliptic problems with critical growth to the variable exponent case. We prove, in the spirit of [4], the existence of at least three nontrivial solutions to the quasilinear elliptic equation −Δp(x)u = |u|q(x)−2u + λ f (x, u) in a smooth bounded domain Ω of RN with homogeneous Dirichlet boundary conditions on ∂Ω. We assume that {q(x) = p∗(x)} ≠ ø, where p∗(x) = Np(x)/(N − p(x)) is the critical Sobolev exponent for variable exponents and Δp(x)u = div(|∇u|p(x)−2∇u) is the p(x)−laplacian. The proof is based on variational arguments and the extension of concentration compactness method for variable exponent spaces. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14926 Silva, Analia; Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth; Advanced Nonlinear Studies, Inc; Advanced Nonlinear Studies; 11; 1; 1-2011; 63-75 1536-1365 |
url |
http://hdl.handle.net/11336/14926 |
identifier_str_mv |
Silva, Analia; Multiple Solutions for the p ( x ) − Laplace Operator with Critical Growth; Advanced Nonlinear Studies, Inc; Advanced Nonlinear Studies; 11; 1; 1-2011; 63-75 1536-1365 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.2011.11.issue-1/ans-2011-0103/ans-2011-0103.xml info:eu-repo/semantics/altIdentifier/doi/10.1515/ans-2011-0103 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Advanced Nonlinear Studies, Inc |
publisher.none.fl_str_mv |
Advanced Nonlinear Studies, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614028391874560 |
score |
13.070432 |