Local existence conditions for an equations involving the p(x) -Laplacian with critical exponent in RN
- Autores
- Saintier, Nicolas Bernard Claude; Silva, Analia
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The purpose of this paper is to formulate sufficient existence conditions for a critical equation involving the p(x)-Laplacian of the form (0.1) below posed in RN. This equation is critical in the sense that the source term has the form K(x) | u| q ( x ) - 2u with an exponent q that can be equal to the critical exponent p∗ at some points of RN including at infinity. The sufficient existence condition we find are local in the sense that they depend only on the behaviour of the exponents p and q near these points. We stress that we do not assume any symmetry or periodicity of the coefficients of the equation and that K is not required to vanish in some sense at infinity like in most existing results. The proof of these local existence conditions is based on a notion of localized best Sobolev constant at infinity and a refined concentration-compactness at infinity.
Fil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; Argentina - Materia
-
CONCENTRATION COMPACTNESS
CRITICAL EXPONENTS
SOBOLEV EMBEDDING
VARIABLE EXPONENTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60103
Ver los metadatos del registro completo
id |
CONICETDig_b0b24b8e86566305eca354bbee7c65ee |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60103 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Local existence conditions for an equations involving the p(x) -Laplacian with critical exponent in RNSaintier, Nicolas Bernard ClaudeSilva, AnaliaCONCENTRATION COMPACTNESSCRITICAL EXPONENTSSOBOLEV EMBEDDINGVARIABLE EXPONENTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The purpose of this paper is to formulate sufficient existence conditions for a critical equation involving the p(x)-Laplacian of the form (0.1) below posed in RN. This equation is critical in the sense that the source term has the form K(x) | u| q ( x ) - 2u with an exponent q that can be equal to the critical exponent p∗ at some points of RN including at infinity. The sufficient existence condition we find are local in the sense that they depend only on the behaviour of the exponents p and q near these points. We stress that we do not assume any symmetry or periodicity of the coefficients of the equation and that K is not required to vanish in some sense at infinity like in most existing results. The proof of these local existence conditions is based on a notion of localized best Sobolev constant at infinity and a refined concentration-compactness at infinity.Fil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; ArgentinaSpringer2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60103Saintier, Nicolas Bernard Claude; Silva, Analia; Local existence conditions for an equations involving the p(x) -Laplacian with critical exponent in RN; Springer; Nonlinear Differential Equations And Applications; 24; 2; 4-2017; 1-301021-97221420-9004CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00030-017-0441-2info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00030-017-0441-2info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1511.04574info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:24Zoai:ri.conicet.gov.ar:11336/60103instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:25.036CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Local existence conditions for an equations involving the p(x) -Laplacian with critical exponent in RN |
title |
Local existence conditions for an equations involving the p(x) -Laplacian with critical exponent in RN |
spellingShingle |
Local existence conditions for an equations involving the p(x) -Laplacian with critical exponent in RN Saintier, Nicolas Bernard Claude CONCENTRATION COMPACTNESS CRITICAL EXPONENTS SOBOLEV EMBEDDING VARIABLE EXPONENTS |
title_short |
Local existence conditions for an equations involving the p(x) -Laplacian with critical exponent in RN |
title_full |
Local existence conditions for an equations involving the p(x) -Laplacian with critical exponent in RN |
title_fullStr |
Local existence conditions for an equations involving the p(x) -Laplacian with critical exponent in RN |
title_full_unstemmed |
Local existence conditions for an equations involving the p(x) -Laplacian with critical exponent in RN |
title_sort |
Local existence conditions for an equations involving the p(x) -Laplacian with critical exponent in RN |
dc.creator.none.fl_str_mv |
Saintier, Nicolas Bernard Claude Silva, Analia |
author |
Saintier, Nicolas Bernard Claude |
author_facet |
Saintier, Nicolas Bernard Claude Silva, Analia |
author_role |
author |
author2 |
Silva, Analia |
author2_role |
author |
dc.subject.none.fl_str_mv |
CONCENTRATION COMPACTNESS CRITICAL EXPONENTS SOBOLEV EMBEDDING VARIABLE EXPONENTS |
topic |
CONCENTRATION COMPACTNESS CRITICAL EXPONENTS SOBOLEV EMBEDDING VARIABLE EXPONENTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The purpose of this paper is to formulate sufficient existence conditions for a critical equation involving the p(x)-Laplacian of the form (0.1) below posed in RN. This equation is critical in the sense that the source term has the form K(x) | u| q ( x ) - 2u with an exponent q that can be equal to the critical exponent p∗ at some points of RN including at infinity. The sufficient existence condition we find are local in the sense that they depend only on the behaviour of the exponents p and q near these points. We stress that we do not assume any symmetry or periodicity of the coefficients of the equation and that K is not required to vanish in some sense at infinity like in most existing results. The proof of these local existence conditions is based on a notion of localized best Sobolev constant at infinity and a refined concentration-compactness at infinity. Fil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Silva, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; Argentina |
description |
The purpose of this paper is to formulate sufficient existence conditions for a critical equation involving the p(x)-Laplacian of the form (0.1) below posed in RN. This equation is critical in the sense that the source term has the form K(x) | u| q ( x ) - 2u with an exponent q that can be equal to the critical exponent p∗ at some points of RN including at infinity. The sufficient existence condition we find are local in the sense that they depend only on the behaviour of the exponents p and q near these points. We stress that we do not assume any symmetry or periodicity of the coefficients of the equation and that K is not required to vanish in some sense at infinity like in most existing results. The proof of these local existence conditions is based on a notion of localized best Sobolev constant at infinity and a refined concentration-compactness at infinity. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60103 Saintier, Nicolas Bernard Claude; Silva, Analia; Local existence conditions for an equations involving the p(x) -Laplacian with critical exponent in RN; Springer; Nonlinear Differential Equations And Applications; 24; 2; 4-2017; 1-30 1021-9722 1420-9004 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60103 |
identifier_str_mv |
Saintier, Nicolas Bernard Claude; Silva, Analia; Local existence conditions for an equations involving the p(x) -Laplacian with critical exponent in RN; Springer; Nonlinear Differential Equations And Applications; 24; 2; 4-2017; 1-30 1021-9722 1420-9004 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00030-017-0441-2 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00030-017-0441-2 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1511.04574 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613870093598720 |
score |
13.070432 |