On maximal inequalities arising in best approximation

Autores
Mazzone, Fernando Dario; Zo, Felipe
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let f be a function in an Orlicz space L^Φ and  μ(f,la) be the  set all the best Φ-approximants to f, given a $sigma-σ−−lattice L. Weak type inequalities are proved for the maximal operator f∗ = supn |fn|, where fn is any selection of functions in µ(f, Ln), and Ln is an increasing sequence of σ-lattices. Strong inequalities are proved in an abstract set up which can be used for an operator as f ∗ .
Fil: Mazzone, Fernando Dario. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zo, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Materia
BEST APPROXIMANTS
Φ-APPROXIMANTS
Σ-LATTICES
MAXIMAL INEQUALITIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/235166

id CONICETDig_de64c3043578e49bcbf38d05ad0fe3b2
oai_identifier_str oai:ri.conicet.gov.ar:11336/235166
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On maximal inequalities arising in best approximationMazzone, Fernando DarioZo, FelipeBEST APPROXIMANTSΦ-APPROXIMANTSΣ-LATTICESMAXIMAL INEQUALITIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let f be a function in an Orlicz space L^Φ and  μ(f,la) be the  set all the best Φ-approximants to f, given a $sigma-σ−−lattice L. Weak type inequalities are proved for the maximal operator f∗ = supn |fn|, where fn is any selection of functions in µ(f, Ln), and Ln is an increasing sequence of σ-lattices. Strong inequalities are proved in an abstract set up which can be used for an operator as f ∗ .Fil: Mazzone, Fernando Dario. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zo, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaVictoria University2009-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/235166Mazzone, Fernando Dario; Zo, Felipe; On maximal inequalities arising in best approximation; Victoria University; Journal of Inequalities in Pure and Applied Mathematics; 10; 6-2009; 1-21, 581443-5756CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.emis.de/journals/JIPAM/article1114.htmlinfo:eu-repo/semantics/altIdentifier/url/https://www.emis.de/journals/JIPAM/images/286_06_JIPAM/286_06.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:09Zoai:ri.conicet.gov.ar:11336/235166instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:09.951CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On maximal inequalities arising in best approximation
title On maximal inequalities arising in best approximation
spellingShingle On maximal inequalities arising in best approximation
Mazzone, Fernando Dario
BEST APPROXIMANTS
Φ-APPROXIMANTS
Σ-LATTICES
MAXIMAL INEQUALITIES
title_short On maximal inequalities arising in best approximation
title_full On maximal inequalities arising in best approximation
title_fullStr On maximal inequalities arising in best approximation
title_full_unstemmed On maximal inequalities arising in best approximation
title_sort On maximal inequalities arising in best approximation
dc.creator.none.fl_str_mv Mazzone, Fernando Dario
Zo, Felipe
author Mazzone, Fernando Dario
author_facet Mazzone, Fernando Dario
Zo, Felipe
author_role author
author2 Zo, Felipe
author2_role author
dc.subject.none.fl_str_mv BEST APPROXIMANTS
Φ-APPROXIMANTS
Σ-LATTICES
MAXIMAL INEQUALITIES
topic BEST APPROXIMANTS
Φ-APPROXIMANTS
Σ-LATTICES
MAXIMAL INEQUALITIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let f be a function in an Orlicz space L^Φ and  μ(f,la) be the  set all the best Φ-approximants to f, given a $sigma-σ−−lattice L. Weak type inequalities are proved for the maximal operator f∗ = supn |fn|, where fn is any selection of functions in µ(f, Ln), and Ln is an increasing sequence of σ-lattices. Strong inequalities are proved in an abstract set up which can be used for an operator as f ∗ .
Fil: Mazzone, Fernando Dario. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zo, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
description Let f be a function in an Orlicz space L^Φ and  μ(f,la) be the  set all the best Φ-approximants to f, given a $sigma-σ−−lattice L. Weak type inequalities are proved for the maximal operator f∗ = supn |fn|, where fn is any selection of functions in µ(f, Ln), and Ln is an increasing sequence of σ-lattices. Strong inequalities are proved in an abstract set up which can be used for an operator as f ∗ .
publishDate 2009
dc.date.none.fl_str_mv 2009-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/235166
Mazzone, Fernando Dario; Zo, Felipe; On maximal inequalities arising in best approximation; Victoria University; Journal of Inequalities in Pure and Applied Mathematics; 10; 6-2009; 1-21, 58
1443-5756
CONICET Digital
CONICET
url http://hdl.handle.net/11336/235166
identifier_str_mv Mazzone, Fernando Dario; Zo, Felipe; On maximal inequalities arising in best approximation; Victoria University; Journal of Inequalities in Pure and Applied Mathematics; 10; 6-2009; 1-21, 58
1443-5756
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.emis.de/journals/JIPAM/article1114.html
info:eu-repo/semantics/altIdentifier/url/https://www.emis.de/journals/JIPAM/images/286_06_JIPAM/286_06.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Victoria University
publisher.none.fl_str_mv Victoria University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269504317423616
score 13.13397