On maximal inequalities arising in best approximation
- Autores
- Mazzone, Fernando Dario; Zo, Felipe
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let f be a function in an Orlicz space L^Φ and μ(f,la) be the set all the best Φ-approximants to f, given a $sigma-σ−−lattice L. Weak type inequalities are proved for the maximal operator f∗ = supn |fn|, where fn is any selection of functions in µ(f, Ln), and Ln is an increasing sequence of σ-lattices. Strong inequalities are proved in an abstract set up which can be used for an operator as f ∗ .
Fil: Mazzone, Fernando Dario. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zo, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina - Materia
-
BEST APPROXIMANTS
Φ-APPROXIMANTS
Σ-LATTICES
MAXIMAL INEQUALITIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/235166
Ver los metadatos del registro completo
id |
CONICETDig_de64c3043578e49bcbf38d05ad0fe3b2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/235166 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On maximal inequalities arising in best approximationMazzone, Fernando DarioZo, FelipeBEST APPROXIMANTSΦ-APPROXIMANTSΣ-LATTICESMAXIMAL INEQUALITIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let f be a function in an Orlicz space L^Φ and μ(f,la) be the set all the best Φ-approximants to f, given a $sigma-σ−−lattice L. Weak type inequalities are proved for the maximal operator f∗ = supn |fn|, where fn is any selection of functions in µ(f, Ln), and Ln is an increasing sequence of σ-lattices. Strong inequalities are proved in an abstract set up which can be used for an operator as f ∗ .Fil: Mazzone, Fernando Dario. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zo, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaVictoria University2009-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/235166Mazzone, Fernando Dario; Zo, Felipe; On maximal inequalities arising in best approximation; Victoria University; Journal of Inequalities in Pure and Applied Mathematics; 10; 6-2009; 1-21, 581443-5756CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.emis.de/journals/JIPAM/article1114.htmlinfo:eu-repo/semantics/altIdentifier/url/https://www.emis.de/journals/JIPAM/images/286_06_JIPAM/286_06.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:09Zoai:ri.conicet.gov.ar:11336/235166instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:09.951CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On maximal inequalities arising in best approximation |
title |
On maximal inequalities arising in best approximation |
spellingShingle |
On maximal inequalities arising in best approximation Mazzone, Fernando Dario BEST APPROXIMANTS Φ-APPROXIMANTS Σ-LATTICES MAXIMAL INEQUALITIES |
title_short |
On maximal inequalities arising in best approximation |
title_full |
On maximal inequalities arising in best approximation |
title_fullStr |
On maximal inequalities arising in best approximation |
title_full_unstemmed |
On maximal inequalities arising in best approximation |
title_sort |
On maximal inequalities arising in best approximation |
dc.creator.none.fl_str_mv |
Mazzone, Fernando Dario Zo, Felipe |
author |
Mazzone, Fernando Dario |
author_facet |
Mazzone, Fernando Dario Zo, Felipe |
author_role |
author |
author2 |
Zo, Felipe |
author2_role |
author |
dc.subject.none.fl_str_mv |
BEST APPROXIMANTS Φ-APPROXIMANTS Σ-LATTICES MAXIMAL INEQUALITIES |
topic |
BEST APPROXIMANTS Φ-APPROXIMANTS Σ-LATTICES MAXIMAL INEQUALITIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let f be a function in an Orlicz space L^Φ and μ(f,la) be the set all the best Φ-approximants to f, given a $sigma-σ−−lattice L. Weak type inequalities are proved for the maximal operator f∗ = supn |fn|, where fn is any selection of functions in µ(f, Ln), and Ln is an increasing sequence of σ-lattices. Strong inequalities are proved in an abstract set up which can be used for an operator as f ∗ . Fil: Mazzone, Fernando Dario. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Zo, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina |
description |
Let f be a function in an Orlicz space L^Φ and μ(f,la) be the set all the best Φ-approximants to f, given a $sigma-σ−−lattice L. Weak type inequalities are proved for the maximal operator f∗ = supn |fn|, where fn is any selection of functions in µ(f, Ln), and Ln is an increasing sequence of σ-lattices. Strong inequalities are proved in an abstract set up which can be used for an operator as f ∗ . |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/235166 Mazzone, Fernando Dario; Zo, Felipe; On maximal inequalities arising in best approximation; Victoria University; Journal of Inequalities in Pure and Applied Mathematics; 10; 6-2009; 1-21, 58 1443-5756 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/235166 |
identifier_str_mv |
Mazzone, Fernando Dario; Zo, Felipe; On maximal inequalities arising in best approximation; Victoria University; Journal of Inequalities in Pure and Applied Mathematics; 10; 6-2009; 1-21, 58 1443-5756 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.emis.de/journals/JIPAM/article1114.html info:eu-repo/semantics/altIdentifier/url/https://www.emis.de/journals/JIPAM/images/286_06_JIPAM/286_06.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Victoria University |
publisher.none.fl_str_mv |
Victoria University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269504317423616 |
score |
13.13397 |