A characterization of the extended best φ-approximation operator
- Autores
- Carrizo, Ivana; Favier, Sergio José; Zo, Felipe
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given an non necessarily linear operator T defined from an Orlicz space L φ′(Ω, , μ) into itself, where φ′ denote the derivative of a strictly convex function φ, we give necessary and sufficient conditions on T assuring that this operator is an extended best φ-approximation operator given a suitable σ-lattice ℒ ⊆ .
Fil: Carrizo, Ivana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; Argentina
Fil: Favier, Sergio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; Argentina
Fil: Zo, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; Argentina - Materia
-
Extension of A Best Approximation Operator
Lattice of Functions
Limit of Extended Best Φ-Approximations
Orlicz Spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15431
Ver los metadatos del registro completo
| id |
CONICETDig_3139c56e9493e66b6085dc789dac9cf3 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15431 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A characterization of the extended best φ-approximation operatorCarrizo, IvanaFavier, Sergio JoséZo, FelipeExtension of A Best Approximation OperatorLattice of FunctionsLimit of Extended Best Φ-ApproximationsOrlicz Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given an non necessarily linear operator T defined from an Orlicz space L φ′(Ω, , μ) into itself, where φ′ denote the derivative of a strictly convex function φ, we give necessary and sufficient conditions on T assuring that this operator is an extended best φ-approximation operator given a suitable σ-lattice ℒ ⊆ .Fil: Carrizo, Ivana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; ArgentinaFil: Favier, Sergio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; ArgentinaFil: Zo, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; ArgentinaTaylor & Francis2011-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15431Carrizo, Ivana; Favier, Sergio José; Zo, Felipe; A characterization of the extended best φ-approximation operator; Taylor & Francis; Numerical Functional Analysis And Optimization; 32; 3; 5-2011; 254-2660163-0563enginfo:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/01630563.2010.536287info:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2010.536287info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:47:25Zoai:ri.conicet.gov.ar:11336/15431instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:47:25.571CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A characterization of the extended best φ-approximation operator |
| title |
A characterization of the extended best φ-approximation operator |
| spellingShingle |
A characterization of the extended best φ-approximation operator Carrizo, Ivana Extension of A Best Approximation Operator Lattice of Functions Limit of Extended Best Φ-Approximations Orlicz Spaces |
| title_short |
A characterization of the extended best φ-approximation operator |
| title_full |
A characterization of the extended best φ-approximation operator |
| title_fullStr |
A characterization of the extended best φ-approximation operator |
| title_full_unstemmed |
A characterization of the extended best φ-approximation operator |
| title_sort |
A characterization of the extended best φ-approximation operator |
| dc.creator.none.fl_str_mv |
Carrizo, Ivana Favier, Sergio José Zo, Felipe |
| author |
Carrizo, Ivana |
| author_facet |
Carrizo, Ivana Favier, Sergio José Zo, Felipe |
| author_role |
author |
| author2 |
Favier, Sergio José Zo, Felipe |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Extension of A Best Approximation Operator Lattice of Functions Limit of Extended Best Φ-Approximations Orlicz Spaces |
| topic |
Extension of A Best Approximation Operator Lattice of Functions Limit of Extended Best Φ-Approximations Orlicz Spaces |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Given an non necessarily linear operator T defined from an Orlicz space L φ′(Ω, , μ) into itself, where φ′ denote the derivative of a strictly convex function φ, we give necessary and sufficient conditions on T assuring that this operator is an extended best φ-approximation operator given a suitable σ-lattice ℒ ⊆ . Fil: Carrizo, Ivana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; Argentina Fil: Favier, Sergio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; Argentina Fil: Zo, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina. Universidad Nacional de San Luis; Argentina |
| description |
Given an non necessarily linear operator T defined from an Orlicz space L φ′(Ω, , μ) into itself, where φ′ denote the derivative of a strictly convex function φ, we give necessary and sufficient conditions on T assuring that this operator is an extended best φ-approximation operator given a suitable σ-lattice ℒ ⊆ . |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15431 Carrizo, Ivana; Favier, Sergio José; Zo, Felipe; A characterization of the extended best φ-approximation operator; Taylor & Francis; Numerical Functional Analysis And Optimization; 32; 3; 5-2011; 254-266 0163-0563 |
| url |
http://hdl.handle.net/11336/15431 |
| identifier_str_mv |
Carrizo, Ivana; Favier, Sergio José; Zo, Felipe; A characterization of the extended best φ-approximation operator; Taylor & Francis; Numerical Functional Analysis And Optimization; 32; 3; 5-2011; 254-266 0163-0563 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/01630563.2010.536287 info:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2010.536287 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Taylor & Francis |
| publisher.none.fl_str_mv |
Taylor & Francis |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597947072118784 |
| score |
12.976206 |