Extension of the Best Constant Approximation Operator in Orlicz Spaces

Autores
Favier, Sergio José; Lorenzo, Rosa Alejandra
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article we deal with the best φ-approximation operator by constants extended from an Orlicz space Lφ(Ω) to the space Lψ+ (Ω) where ψ+ denotes the right derivative of the function φ. We obtain pointwise convergence for a suitable class of functions. Also we consider a maximal operator which allows as to get modular convergence for a specific class of Orlicz spaces.
Fil: Favier, Sergio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Lorenzo, Rosa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Materia
BEST APPROXIMATION
MAXIMAL INEQUALITIES
ORLICZ SPACES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/142795

id CONICETDig_b580bf1843ce052062f36eeeb04862ff
oai_identifier_str oai:ri.conicet.gov.ar:11336/142795
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Extension of the Best Constant Approximation Operator in Orlicz SpacesFavier, Sergio JoséLorenzo, Rosa AlejandraBEST APPROXIMATIONMAXIMAL INEQUALITIESORLICZ SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we deal with the best φ-approximation operator by constants extended from an Orlicz space Lφ(Ω) to the space Lψ+ (Ω) where ψ+ denotes the right derivative of the function φ. We obtain pointwise convergence for a suitable class of functions. Also we consider a maximal operator which allows as to get modular convergence for a specific class of Orlicz spaces.Fil: Favier, Sergio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Lorenzo, Rosa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaTaylor & Francis2020-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/142795Favier, Sergio José; Lorenzo, Rosa Alejandra; Extension of the Best Constant Approximation Operator in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 41; 6; 4-2020; 635-6580163-0563CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/01630563.2019.1666279info:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2019.1666279info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:00Zoai:ri.conicet.gov.ar:11336/142795instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:00.446CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Extension of the Best Constant Approximation Operator in Orlicz Spaces
title Extension of the Best Constant Approximation Operator in Orlicz Spaces
spellingShingle Extension of the Best Constant Approximation Operator in Orlicz Spaces
Favier, Sergio José
BEST APPROXIMATION
MAXIMAL INEQUALITIES
ORLICZ SPACES
title_short Extension of the Best Constant Approximation Operator in Orlicz Spaces
title_full Extension of the Best Constant Approximation Operator in Orlicz Spaces
title_fullStr Extension of the Best Constant Approximation Operator in Orlicz Spaces
title_full_unstemmed Extension of the Best Constant Approximation Operator in Orlicz Spaces
title_sort Extension of the Best Constant Approximation Operator in Orlicz Spaces
dc.creator.none.fl_str_mv Favier, Sergio José
Lorenzo, Rosa Alejandra
author Favier, Sergio José
author_facet Favier, Sergio José
Lorenzo, Rosa Alejandra
author_role author
author2 Lorenzo, Rosa Alejandra
author2_role author
dc.subject.none.fl_str_mv BEST APPROXIMATION
MAXIMAL INEQUALITIES
ORLICZ SPACES
topic BEST APPROXIMATION
MAXIMAL INEQUALITIES
ORLICZ SPACES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this article we deal with the best φ-approximation operator by constants extended from an Orlicz space Lφ(Ω) to the space Lψ+ (Ω) where ψ+ denotes the right derivative of the function φ. We obtain pointwise convergence for a suitable class of functions. Also we consider a maximal operator which allows as to get modular convergence for a specific class of Orlicz spaces.
Fil: Favier, Sergio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Lorenzo, Rosa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
description In this article we deal with the best φ-approximation operator by constants extended from an Orlicz space Lφ(Ω) to the space Lψ+ (Ω) where ψ+ denotes the right derivative of the function φ. We obtain pointwise convergence for a suitable class of functions. Also we consider a maximal operator which allows as to get modular convergence for a specific class of Orlicz spaces.
publishDate 2020
dc.date.none.fl_str_mv 2020-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/142795
Favier, Sergio José; Lorenzo, Rosa Alejandra; Extension of the Best Constant Approximation Operator in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 41; 6; 4-2020; 635-658
0163-0563
CONICET Digital
CONICET
url http://hdl.handle.net/11336/142795
identifier_str_mv Favier, Sergio José; Lorenzo, Rosa Alejandra; Extension of the Best Constant Approximation Operator in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 41; 6; 4-2020; 635-658
0163-0563
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/01630563.2019.1666279
info:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2019.1666279
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270140695052288
score 13.13397