Extension of the Best Constant Approximation Operator in Orlicz Spaces
- Autores
- Favier, Sergio José; Lorenzo, Rosa Alejandra
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we deal with the best φ-approximation operator by constants extended from an Orlicz space Lφ(Ω) to the space Lψ+ (Ω) where ψ+ denotes the right derivative of the function φ. We obtain pointwise convergence for a suitable class of functions. Also we consider a maximal operator which allows as to get modular convergence for a specific class of Orlicz spaces.
Fil: Favier, Sergio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Lorenzo, Rosa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina - Materia
-
BEST APPROXIMATION
MAXIMAL INEQUALITIES
ORLICZ SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/142795
Ver los metadatos del registro completo
id |
CONICETDig_b580bf1843ce052062f36eeeb04862ff |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/142795 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Extension of the Best Constant Approximation Operator in Orlicz SpacesFavier, Sergio JoséLorenzo, Rosa AlejandraBEST APPROXIMATIONMAXIMAL INEQUALITIESORLICZ SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we deal with the best φ-approximation operator by constants extended from an Orlicz space Lφ(Ω) to the space Lψ+ (Ω) where ψ+ denotes the right derivative of the function φ. We obtain pointwise convergence for a suitable class of functions. Also we consider a maximal operator which allows as to get modular convergence for a specific class of Orlicz spaces.Fil: Favier, Sergio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Lorenzo, Rosa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaTaylor & Francis2020-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/142795Favier, Sergio José; Lorenzo, Rosa Alejandra; Extension of the Best Constant Approximation Operator in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 41; 6; 4-2020; 635-6580163-0563CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/01630563.2019.1666279info:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2019.1666279info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:00Zoai:ri.conicet.gov.ar:11336/142795instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:00.446CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Extension of the Best Constant Approximation Operator in Orlicz Spaces |
title |
Extension of the Best Constant Approximation Operator in Orlicz Spaces |
spellingShingle |
Extension of the Best Constant Approximation Operator in Orlicz Spaces Favier, Sergio José BEST APPROXIMATION MAXIMAL INEQUALITIES ORLICZ SPACES |
title_short |
Extension of the Best Constant Approximation Operator in Orlicz Spaces |
title_full |
Extension of the Best Constant Approximation Operator in Orlicz Spaces |
title_fullStr |
Extension of the Best Constant Approximation Operator in Orlicz Spaces |
title_full_unstemmed |
Extension of the Best Constant Approximation Operator in Orlicz Spaces |
title_sort |
Extension of the Best Constant Approximation Operator in Orlicz Spaces |
dc.creator.none.fl_str_mv |
Favier, Sergio José Lorenzo, Rosa Alejandra |
author |
Favier, Sergio José |
author_facet |
Favier, Sergio José Lorenzo, Rosa Alejandra |
author_role |
author |
author2 |
Lorenzo, Rosa Alejandra |
author2_role |
author |
dc.subject.none.fl_str_mv |
BEST APPROXIMATION MAXIMAL INEQUALITIES ORLICZ SPACES |
topic |
BEST APPROXIMATION MAXIMAL INEQUALITIES ORLICZ SPACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article we deal with the best φ-approximation operator by constants extended from an Orlicz space Lφ(Ω) to the space Lψ+ (Ω) where ψ+ denotes the right derivative of the function φ. We obtain pointwise convergence for a suitable class of functions. Also we consider a maximal operator which allows as to get modular convergence for a specific class of Orlicz spaces. Fil: Favier, Sergio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina Fil: Lorenzo, Rosa Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina |
description |
In this article we deal with the best φ-approximation operator by constants extended from an Orlicz space Lφ(Ω) to the space Lψ+ (Ω) where ψ+ denotes the right derivative of the function φ. We obtain pointwise convergence for a suitable class of functions. Also we consider a maximal operator which allows as to get modular convergence for a specific class of Orlicz spaces. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/142795 Favier, Sergio José; Lorenzo, Rosa Alejandra; Extension of the Best Constant Approximation Operator in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 41; 6; 4-2020; 635-658 0163-0563 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/142795 |
identifier_str_mv |
Favier, Sergio José; Lorenzo, Rosa Alejandra; Extension of the Best Constant Approximation Operator in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 41; 6; 4-2020; 635-658 0163-0563 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/01630563.2019.1666279 info:eu-repo/semantics/altIdentifier/doi/10.1080/01630563.2019.1666279 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270140695052288 |
score |
13.13397 |