A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions

Autores
Mazzone, Fernando Dario; Schwindt, Erica Leticia
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let f be a function in C ( [ 0 , 1 ] ) . We denote by f p the best approximant to f in L p ( [ 0 , 1 ] ) by nondecreasing functions. It is well known that the limit f ∗ := lim p → ∞ f p exists and f ∗ is a best approximant to f in C ( [ 0 , 1 ] ) by nondecreasing functions. In this paper we show an explicit formula for the function f ∗ and we prove some additional minimization properties of f ∗ .
Fil: Mazzone, Fernando Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto; Argentina
Fil: Schwindt, Erica Leticia. Universidad Nacional de Río Cuarto; Argentina
Materia
MINIMAX
NATURAL
BEST
APPROXIMANTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/241740

id CONICETDig_c8752fda64fb37e9b87c26ee038d7e7a
oai_identifier_str oai:ri.conicet.gov.ar:11336/241740
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing FunctionsMazzone, Fernando DarioSchwindt, Erica LeticiaMINIMAXNATURALBESTAPPROXIMANTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let f be a function in C ( [ 0 , 1 ] ) . We denote by f p the best approximant to f in L p ( [ 0 , 1 ] ) by nondecreasing functions. It is well known that the limit f ∗ := lim p → ∞ f p exists and f ∗ is a best approximant to f in C ( [ 0 , 1 ] ) by nondecreasing functions. In this paper we show an explicit formula for the function f ∗ and we prove some additional minimization properties of f ∗ .Fil: Mazzone, Fernando Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto; ArgentinaFil: Schwindt, Erica Leticia. Universidad Nacional de Río Cuarto; ArgentinaMichigan State University2007-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241740Mazzone, Fernando Dario; Schwindt, Erica Leticia; A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions; Michigan State University; Real Analysis Exchange; 32; 1; 3-2007; 171-1780147-1937CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/real-analysis-exchange/volume-32/issue-1/A-minimax-formula-for-the-best-natural-C01-approximate-by/rae/1184700043.fullinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:59Zoai:ri.conicet.gov.ar:11336/241740instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:00.205CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions
title A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions
spellingShingle A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions
Mazzone, Fernando Dario
MINIMAX
NATURAL
BEST
APPROXIMANTS
title_short A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions
title_full A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions
title_fullStr A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions
title_full_unstemmed A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions
title_sort A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions
dc.creator.none.fl_str_mv Mazzone, Fernando Dario
Schwindt, Erica Leticia
author Mazzone, Fernando Dario
author_facet Mazzone, Fernando Dario
Schwindt, Erica Leticia
author_role author
author2 Schwindt, Erica Leticia
author2_role author
dc.subject.none.fl_str_mv MINIMAX
NATURAL
BEST
APPROXIMANTS
topic MINIMAX
NATURAL
BEST
APPROXIMANTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let f be a function in C ( [ 0 , 1 ] ) . We denote by f p the best approximant to f in L p ( [ 0 , 1 ] ) by nondecreasing functions. It is well known that the limit f ∗ := lim p → ∞ f p exists and f ∗ is a best approximant to f in C ( [ 0 , 1 ] ) by nondecreasing functions. In this paper we show an explicit formula for the function f ∗ and we prove some additional minimization properties of f ∗ .
Fil: Mazzone, Fernando Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto; Argentina
Fil: Schwindt, Erica Leticia. Universidad Nacional de Río Cuarto; Argentina
description Let f be a function in C ( [ 0 , 1 ] ) . We denote by f p the best approximant to f in L p ( [ 0 , 1 ] ) by nondecreasing functions. It is well known that the limit f ∗ := lim p → ∞ f p exists and f ∗ is a best approximant to f in C ( [ 0 , 1 ] ) by nondecreasing functions. In this paper we show an explicit formula for the function f ∗ and we prove some additional minimization properties of f ∗ .
publishDate 2007
dc.date.none.fl_str_mv 2007-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/241740
Mazzone, Fernando Dario; Schwindt, Erica Leticia; A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions; Michigan State University; Real Analysis Exchange; 32; 1; 3-2007; 171-178
0147-1937
CONICET Digital
CONICET
url http://hdl.handle.net/11336/241740
identifier_str_mv Mazzone, Fernando Dario; Schwindt, Erica Leticia; A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions; Michigan State University; Real Analysis Exchange; 32; 1; 3-2007; 171-178
0147-1937
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/real-analysis-exchange/volume-32/issue-1/A-minimax-formula-for-the-best-natural-C01-approximate-by/rae/1184700043.full
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Michigan State University
publisher.none.fl_str_mv Michigan State University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269006971535360
score 13.13397