A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions
- Autores
- Mazzone, Fernando Dario; Schwindt, Erica Leticia
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let f be a function in C ( [ 0 , 1 ] ) . We denote by f p the best approximant to f in L p ( [ 0 , 1 ] ) by nondecreasing functions. It is well known that the limit f ∗ := lim p → ∞ f p exists and f ∗ is a best approximant to f in C ( [ 0 , 1 ] ) by nondecreasing functions. In this paper we show an explicit formula for the function f ∗ and we prove some additional minimization properties of f ∗ .
Fil: Mazzone, Fernando Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto; Argentina
Fil: Schwindt, Erica Leticia. Universidad Nacional de Río Cuarto; Argentina - Materia
-
MINIMAX
NATURAL
BEST
APPROXIMANTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/241740
Ver los metadatos del registro completo
id |
CONICETDig_c8752fda64fb37e9b87c26ee038d7e7a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/241740 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing FunctionsMazzone, Fernando DarioSchwindt, Erica LeticiaMINIMAXNATURALBESTAPPROXIMANTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let f be a function in C ( [ 0 , 1 ] ) . We denote by f p the best approximant to f in L p ( [ 0 , 1 ] ) by nondecreasing functions. It is well known that the limit f ∗ := lim p → ∞ f p exists and f ∗ is a best approximant to f in C ( [ 0 , 1 ] ) by nondecreasing functions. In this paper we show an explicit formula for the function f ∗ and we prove some additional minimization properties of f ∗ .Fil: Mazzone, Fernando Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto; ArgentinaFil: Schwindt, Erica Leticia. Universidad Nacional de Río Cuarto; ArgentinaMichigan State University2007-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241740Mazzone, Fernando Dario; Schwindt, Erica Leticia; A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions; Michigan State University; Real Analysis Exchange; 32; 1; 3-2007; 171-1780147-1937CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/real-analysis-exchange/volume-32/issue-1/A-minimax-formula-for-the-best-natural-C01-approximate-by/rae/1184700043.fullinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:59Zoai:ri.conicet.gov.ar:11336/241740instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:00.205CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions |
title |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions |
spellingShingle |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions Mazzone, Fernando Dario MINIMAX NATURAL BEST APPROXIMANTS |
title_short |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions |
title_full |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions |
title_fullStr |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions |
title_full_unstemmed |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions |
title_sort |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions |
dc.creator.none.fl_str_mv |
Mazzone, Fernando Dario Schwindt, Erica Leticia |
author |
Mazzone, Fernando Dario |
author_facet |
Mazzone, Fernando Dario Schwindt, Erica Leticia |
author_role |
author |
author2 |
Schwindt, Erica Leticia |
author2_role |
author |
dc.subject.none.fl_str_mv |
MINIMAX NATURAL BEST APPROXIMANTS |
topic |
MINIMAX NATURAL BEST APPROXIMANTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let f be a function in C ( [ 0 , 1 ] ) . We denote by f p the best approximant to f in L p ( [ 0 , 1 ] ) by nondecreasing functions. It is well known that the limit f ∗ := lim p → ∞ f p exists and f ∗ is a best approximant to f in C ( [ 0 , 1 ] ) by nondecreasing functions. In this paper we show an explicit formula for the function f ∗ and we prove some additional minimization properties of f ∗ . Fil: Mazzone, Fernando Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto; Argentina Fil: Schwindt, Erica Leticia. Universidad Nacional de Río Cuarto; Argentina |
description |
Let f be a function in C ( [ 0 , 1 ] ) . We denote by f p the best approximant to f in L p ( [ 0 , 1 ] ) by nondecreasing functions. It is well known that the limit f ∗ := lim p → ∞ f p exists and f ∗ is a best approximant to f in C ( [ 0 , 1 ] ) by nondecreasing functions. In this paper we show an explicit formula for the function f ∗ and we prove some additional minimization properties of f ∗ . |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/241740 Mazzone, Fernando Dario; Schwindt, Erica Leticia; A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions; Michigan State University; Real Analysis Exchange; 32; 1; 3-2007; 171-178 0147-1937 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/241740 |
identifier_str_mv |
Mazzone, Fernando Dario; Schwindt, Erica Leticia; A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions; Michigan State University; Real Analysis Exchange; 32; 1; 3-2007; 171-178 0147-1937 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/real-analysis-exchange/volume-32/issue-1/A-minimax-formula-for-the-best-natural-C01-approximate-by/rae/1184700043.full |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Michigan State University |
publisher.none.fl_str_mv |
Michigan State University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269006971535360 |
score |
13.13397 |