A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions
- Autores
- Mazzone, Fernando Dario; Schwindt, Erica Leticia
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let f be a function in C ( [ 0 , 1 ] ) . We denote by f p the best approximant to f in L p ( [ 0 , 1 ] ) by nondecreasing functions. It is well known that the limit f ∗ := lim p → ∞ f p exists and f ∗ is a best approximant to f in C ( [ 0 , 1 ] ) by nondecreasing functions. In this paper we show an explicit formula for the function f ∗ and we prove some additional minimization properties of f ∗ .
Fil: Mazzone, Fernando Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto; Argentina
Fil: Schwindt, Erica Leticia. Universidad Nacional de Río Cuarto; Argentina - Materia
-
MINIMAX
NATURAL
BEST
APPROXIMANTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/241740
Ver los metadatos del registro completo
| id |
CONICETDig_c8752fda64fb37e9b87c26ee038d7e7a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/241740 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing FunctionsMazzone, Fernando DarioSchwindt, Erica LeticiaMINIMAXNATURALBESTAPPROXIMANTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let f be a function in C ( [ 0 , 1 ] ) . We denote by f p the best approximant to f in L p ( [ 0 , 1 ] ) by nondecreasing functions. It is well known that the limit f ∗ := lim p → ∞ f p exists and f ∗ is a best approximant to f in C ( [ 0 , 1 ] ) by nondecreasing functions. In this paper we show an explicit formula for the function f ∗ and we prove some additional minimization properties of f ∗ .Fil: Mazzone, Fernando Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto; ArgentinaFil: Schwindt, Erica Leticia. Universidad Nacional de Río Cuarto; ArgentinaMichigan State University2007-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241740Mazzone, Fernando Dario; Schwindt, Erica Leticia; A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions; Michigan State University; Real Analysis Exchange; 32; 1; 3-2007; 171-1780147-1937CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/real-analysis-exchange/volume-32/issue-1/A-minimax-formula-for-the-best-natural-C01-approximate-by/rae/1184700043.fullinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:13:11Zoai:ri.conicet.gov.ar:11336/241740instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:13:11.719CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions |
| title |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions |
| spellingShingle |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions Mazzone, Fernando Dario MINIMAX NATURAL BEST APPROXIMANTS |
| title_short |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions |
| title_full |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions |
| title_fullStr |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions |
| title_full_unstemmed |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions |
| title_sort |
A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions |
| dc.creator.none.fl_str_mv |
Mazzone, Fernando Dario Schwindt, Erica Leticia |
| author |
Mazzone, Fernando Dario |
| author_facet |
Mazzone, Fernando Dario Schwindt, Erica Leticia |
| author_role |
author |
| author2 |
Schwindt, Erica Leticia |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
MINIMAX NATURAL BEST APPROXIMANTS |
| topic |
MINIMAX NATURAL BEST APPROXIMANTS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let f be a function in C ( [ 0 , 1 ] ) . We denote by f p the best approximant to f in L p ( [ 0 , 1 ] ) by nondecreasing functions. It is well known that the limit f ∗ := lim p → ∞ f p exists and f ∗ is a best approximant to f in C ( [ 0 , 1 ] ) by nondecreasing functions. In this paper we show an explicit formula for the function f ∗ and we prove some additional minimization properties of f ∗ . Fil: Mazzone, Fernando Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto; Argentina Fil: Schwindt, Erica Leticia. Universidad Nacional de Río Cuarto; Argentina |
| description |
Let f be a function in C ( [ 0 , 1 ] ) . We denote by f p the best approximant to f in L p ( [ 0 , 1 ] ) by nondecreasing functions. It is well known that the limit f ∗ := lim p → ∞ f p exists and f ∗ is a best approximant to f in C ( [ 0 , 1 ] ) by nondecreasing functions. In this paper we show an explicit formula for the function f ∗ and we prove some additional minimization properties of f ∗ . |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/241740 Mazzone, Fernando Dario; Schwindt, Erica Leticia; A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions; Michigan State University; Real Analysis Exchange; 32; 1; 3-2007; 171-178 0147-1937 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/241740 |
| identifier_str_mv |
Mazzone, Fernando Dario; Schwindt, Erica Leticia; A Minimax Formula for the Best Natural C([0,1])-Approximant by Nondecreasing Functions; Michigan State University; Real Analysis Exchange; 32; 1; 3-2007; 171-178 0147-1937 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/journals/real-analysis-exchange/volume-32/issue-1/A-minimax-formula-for-the-best-natural-C01-approximate-by/rae/1184700043.full |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Michigan State University |
| publisher.none.fl_str_mv |
Michigan State University |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781536363347968 |
| score |
12.982451 |