Maximal inequalities for a best approximation operator in Orlicz spaces
- Autores
- Favier, Sergio José; Zo, Felipe
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study a maximal operator Mf related with the best ϕ approximation by constants for a function f ∈ L ϕ 0 loc(ℝn), where we denote by ϕ 0 for the derivative function of the C1 convex function ϕ. We get a necessary and sufficient condition which assure strong inequalities of the type R ℝn θ(M|f|) dx ¬ K R ℝn θ(|f|) dx, where K is a constant independent of f. Some pointwise and mean convergence results are obtained. In the particular case ϕ(t) = t p+1 we obtain several equivalent conditions on the functions θ that assures strong inequalities of this type.
Fil: Favier, Sergio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; Argentina
Fil: Zo, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; Argentina - Materia
-
Best Φ− Approximations by Constants
Extended Best Approximation Operator
Maximal Inequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15554
Ver los metadatos del registro completo
| id |
CONICETDig_204498d97346e104040ee08bd4499f81 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15554 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Maximal inequalities for a best approximation operator in Orlicz spacesFavier, Sergio JoséZo, FelipeBest Φ− Approximations by ConstantsExtended Best Approximation OperatorMaximal Inequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study a maximal operator Mf related with the best ϕ approximation by constants for a function f ∈ L ϕ 0 loc(ℝn), where we denote by ϕ 0 for the derivative function of the C1 convex function ϕ. We get a necessary and sufficient condition which assure strong inequalities of the type R ℝn θ(M|f|) dx ¬ K R ℝn θ(|f|) dx, where K is a constant independent of f. Some pointwise and mean convergence results are obtained. In the particular case ϕ(t) = t p+1 we obtain several equivalent conditions on the functions θ that assures strong inequalities of this type.Fil: Favier, Sergio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; ArgentinaFil: Zo, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; ArgentinaAdam Mickiewicz University in Poznań. Faculty of Mathematics and Computer Sciences2011-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15554Favier, Sergio José; Zo, Felipe; Maximal inequalities for a best approximation operator in Orlicz spaces; Adam Mickiewicz University in Poznań. Faculty of Mathematics and Computer Sciences; Commentationes Mathematicae; 51; 1; 8-2011; 3-212080-1211enginfo:eu-repo/semantics/altIdentifier/url/http://wydawnictwa.ptm.org.pl/index.php/commentationes-mathematicae/indexinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:39:20Zoai:ri.conicet.gov.ar:11336/15554instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:39:20.802CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Maximal inequalities for a best approximation operator in Orlicz spaces |
| title |
Maximal inequalities for a best approximation operator in Orlicz spaces |
| spellingShingle |
Maximal inequalities for a best approximation operator in Orlicz spaces Favier, Sergio José Best Φ− Approximations by Constants Extended Best Approximation Operator Maximal Inequalities |
| title_short |
Maximal inequalities for a best approximation operator in Orlicz spaces |
| title_full |
Maximal inequalities for a best approximation operator in Orlicz spaces |
| title_fullStr |
Maximal inequalities for a best approximation operator in Orlicz spaces |
| title_full_unstemmed |
Maximal inequalities for a best approximation operator in Orlicz spaces |
| title_sort |
Maximal inequalities for a best approximation operator in Orlicz spaces |
| dc.creator.none.fl_str_mv |
Favier, Sergio José Zo, Felipe |
| author |
Favier, Sergio José |
| author_facet |
Favier, Sergio José Zo, Felipe |
| author_role |
author |
| author2 |
Zo, Felipe |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Best Φ− Approximations by Constants Extended Best Approximation Operator Maximal Inequalities |
| topic |
Best Φ− Approximations by Constants Extended Best Approximation Operator Maximal Inequalities |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this paper we study a maximal operator Mf related with the best ϕ approximation by constants for a function f ∈ L ϕ 0 loc(ℝn), where we denote by ϕ 0 for the derivative function of the C1 convex function ϕ. We get a necessary and sufficient condition which assure strong inequalities of the type R ℝn θ(M|f|) dx ¬ K R ℝn θ(|f|) dx, where K is a constant independent of f. Some pointwise and mean convergence results are obtained. In the particular case ϕ(t) = t p+1 we obtain several equivalent conditions on the functions θ that assures strong inequalities of this type. Fil: Favier, Sergio José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; Argentina Fil: Zo, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis ; Argentina |
| description |
In this paper we study a maximal operator Mf related with the best ϕ approximation by constants for a function f ∈ L ϕ 0 loc(ℝn), where we denote by ϕ 0 for the derivative function of the C1 convex function ϕ. We get a necessary and sufficient condition which assure strong inequalities of the type R ℝn θ(M|f|) dx ¬ K R ℝn θ(|f|) dx, where K is a constant independent of f. Some pointwise and mean convergence results are obtained. In the particular case ϕ(t) = t p+1 we obtain several equivalent conditions on the functions θ that assures strong inequalities of this type. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15554 Favier, Sergio José; Zo, Felipe; Maximal inequalities for a best approximation operator in Orlicz spaces; Adam Mickiewicz University in Poznań. Faculty of Mathematics and Computer Sciences; Commentationes Mathematicae; 51; 1; 8-2011; 3-21 2080-1211 |
| url |
http://hdl.handle.net/11336/15554 |
| identifier_str_mv |
Favier, Sergio José; Zo, Felipe; Maximal inequalities for a best approximation operator in Orlicz spaces; Adam Mickiewicz University in Poznań. Faculty of Mathematics and Computer Sciences; Commentationes Mathematicae; 51; 1; 8-2011; 3-21 2080-1211 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://wydawnictwa.ptm.org.pl/index.php/commentationes-mathematicae/index |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Adam Mickiewicz University in Poznań. Faculty of Mathematics and Computer Sciences |
| publisher.none.fl_str_mv |
Adam Mickiewicz University in Poznań. Faculty of Mathematics and Computer Sciences |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847976910565408768 |
| score |
13.087074 |