Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach
- Autores
- Melo Milanez, Karla Danielle Tavares de; Nóbrega, Thiago César Araújo; Silva Do Nascimento, Danielle; Insausti, Matías; Fernández Band, Beatriz Susana; Pontes, Márcio José Coelho
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work presents a comparative study of chemometric methods used to quantify adulteration of extra virgin olive oil (EVOO) with soybean edible oil using fluorescence and UV–Vis spectroscopies. The adulteration was prepared by adding soybean edible oil in different concentrations (10, 50, 100, 150, 200, 250 and 300 g/kg). Different multivariate regression strategies were evaluated: partial least squares (PLS) using full spectrum; PLS with significant regression coefficients selected by the Jack-Knife algorithm (PLS-JK) and multiple linear regression (MLR) with previous selection of variables by stepwise algorithms (SW-MLR); successive projections algorithm (SPA-MLR); and genetic algorithm (GA-MLR). The predictive ability of the models was assessed, for each spectroscopic technique. For fluorescence spectroscopy, satisfactory prediction results were obtained for all the regression models with Root Mean Square Error of Prediction (RMSEP) values varying from 14.0 to 17.5 g/kg. When the regression methods were evaluated for UV–Vis spectra, higher RMSEP values were found, varying from 13.3 to 30.4 g/kg. The results indicate that the two spectroscopic techniques have similar performances with respect to predictive ability of the regression models.
Fil: Melo Milanez, Karla Danielle Tavares de. Universidade Federal da Paraíba. Departamento de Química; Brasil
Fil: Nóbrega, Thiago César Araújo. Universidade Federal da Paraíba. Departamento de Química; Brasil
Fil: Silva Do Nascimento, Danielle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Insausti, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Fernández Band, Beatriz Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Pontes, Márcio José Coelho. Universidade Federal da Paraíba. Departamento de Química; Brasil - Materia
-
Authenticity
Multiple Linear Regression
Partial Least Squares Regression
Variable Selection - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/56511
Ver los metadatos del registro completo
id |
CONICETDig_dd266ef71f2f7fda9cf8e705aad6fbc0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/56511 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approachMelo Milanez, Karla Danielle Tavares deNóbrega, Thiago César AraújoSilva Do Nascimento, DanielleInsausti, MatíasFernández Band, Beatriz SusanaPontes, Márcio José CoelhoAuthenticityMultiple Linear RegressionPartial Least Squares RegressionVariable Selectionhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1This work presents a comparative study of chemometric methods used to quantify adulteration of extra virgin olive oil (EVOO) with soybean edible oil using fluorescence and UV–Vis spectroscopies. The adulteration was prepared by adding soybean edible oil in different concentrations (10, 50, 100, 150, 200, 250 and 300 g/kg). Different multivariate regression strategies were evaluated: partial least squares (PLS) using full spectrum; PLS with significant regression coefficients selected by the Jack-Knife algorithm (PLS-JK) and multiple linear regression (MLR) with previous selection of variables by stepwise algorithms (SW-MLR); successive projections algorithm (SPA-MLR); and genetic algorithm (GA-MLR). The predictive ability of the models was assessed, for each spectroscopic technique. For fluorescence spectroscopy, satisfactory prediction results were obtained for all the regression models with Root Mean Square Error of Prediction (RMSEP) values varying from 14.0 to 17.5 g/kg. When the regression methods were evaluated for UV–Vis spectra, higher RMSEP values were found, varying from 13.3 to 30.4 g/kg. The results indicate that the two spectroscopic techniques have similar performances with respect to predictive ability of the regression models.Fil: Melo Milanez, Karla Danielle Tavares de. Universidade Federal da Paraíba. Departamento de Química; BrasilFil: Nóbrega, Thiago César Araújo. Universidade Federal da Paraíba. Departamento de Química; BrasilFil: Silva Do Nascimento, Danielle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Insausti, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Fernández Band, Beatriz Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Pontes, Márcio José Coelho. Universidade Federal da Paraíba. Departamento de Química; BrasilElsevier Science2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56511Melo Milanez, Karla Danielle Tavares de; Nóbrega, Thiago César Araújo; Silva Do Nascimento, Danielle; Insausti, Matías; Fernández Band, Beatriz Susana; et al.; Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach; Elsevier Science; LWT - Food Science and Technology; 85; Parte A; 11-2017; 9-150023-6438CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0023643817304644info:eu-repo/semantics/altIdentifier/doi/10.1016/j.lwt.2017.06.060info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:50Zoai:ri.conicet.gov.ar:11336/56511instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:50.396CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach |
title |
Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach |
spellingShingle |
Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach Melo Milanez, Karla Danielle Tavares de Authenticity Multiple Linear Regression Partial Least Squares Regression Variable Selection |
title_short |
Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach |
title_full |
Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach |
title_fullStr |
Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach |
title_full_unstemmed |
Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach |
title_sort |
Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach |
dc.creator.none.fl_str_mv |
Melo Milanez, Karla Danielle Tavares de Nóbrega, Thiago César Araújo Silva Do Nascimento, Danielle Insausti, Matías Fernández Band, Beatriz Susana Pontes, Márcio José Coelho |
author |
Melo Milanez, Karla Danielle Tavares de |
author_facet |
Melo Milanez, Karla Danielle Tavares de Nóbrega, Thiago César Araújo Silva Do Nascimento, Danielle Insausti, Matías Fernández Band, Beatriz Susana Pontes, Márcio José Coelho |
author_role |
author |
author2 |
Nóbrega, Thiago César Araújo Silva Do Nascimento, Danielle Insausti, Matías Fernández Band, Beatriz Susana Pontes, Márcio José Coelho |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Authenticity Multiple Linear Regression Partial Least Squares Regression Variable Selection |
topic |
Authenticity Multiple Linear Regression Partial Least Squares Regression Variable Selection |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This work presents a comparative study of chemometric methods used to quantify adulteration of extra virgin olive oil (EVOO) with soybean edible oil using fluorescence and UV–Vis spectroscopies. The adulteration was prepared by adding soybean edible oil in different concentrations (10, 50, 100, 150, 200, 250 and 300 g/kg). Different multivariate regression strategies were evaluated: partial least squares (PLS) using full spectrum; PLS with significant regression coefficients selected by the Jack-Knife algorithm (PLS-JK) and multiple linear regression (MLR) with previous selection of variables by stepwise algorithms (SW-MLR); successive projections algorithm (SPA-MLR); and genetic algorithm (GA-MLR). The predictive ability of the models was assessed, for each spectroscopic technique. For fluorescence spectroscopy, satisfactory prediction results were obtained for all the regression models with Root Mean Square Error of Prediction (RMSEP) values varying from 14.0 to 17.5 g/kg. When the regression methods were evaluated for UV–Vis spectra, higher RMSEP values were found, varying from 13.3 to 30.4 g/kg. The results indicate that the two spectroscopic techniques have similar performances with respect to predictive ability of the regression models. Fil: Melo Milanez, Karla Danielle Tavares de. Universidade Federal da Paraíba. Departamento de Química; Brasil Fil: Nóbrega, Thiago César Araújo. Universidade Federal da Paraíba. Departamento de Química; Brasil Fil: Silva Do Nascimento, Danielle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Insausti, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Fernández Band, Beatriz Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Pontes, Márcio José Coelho. Universidade Federal da Paraíba. Departamento de Química; Brasil |
description |
This work presents a comparative study of chemometric methods used to quantify adulteration of extra virgin olive oil (EVOO) with soybean edible oil using fluorescence and UV–Vis spectroscopies. The adulteration was prepared by adding soybean edible oil in different concentrations (10, 50, 100, 150, 200, 250 and 300 g/kg). Different multivariate regression strategies were evaluated: partial least squares (PLS) using full spectrum; PLS with significant regression coefficients selected by the Jack-Knife algorithm (PLS-JK) and multiple linear regression (MLR) with previous selection of variables by stepwise algorithms (SW-MLR); successive projections algorithm (SPA-MLR); and genetic algorithm (GA-MLR). The predictive ability of the models was assessed, for each spectroscopic technique. For fluorescence spectroscopy, satisfactory prediction results were obtained for all the regression models with Root Mean Square Error of Prediction (RMSEP) values varying from 14.0 to 17.5 g/kg. When the regression methods were evaluated for UV–Vis spectra, higher RMSEP values were found, varying from 13.3 to 30.4 g/kg. The results indicate that the two spectroscopic techniques have similar performances with respect to predictive ability of the regression models. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/56511 Melo Milanez, Karla Danielle Tavares de; Nóbrega, Thiago César Araújo; Silva Do Nascimento, Danielle; Insausti, Matías; Fernández Band, Beatriz Susana; et al.; Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach; Elsevier Science; LWT - Food Science and Technology; 85; Parte A; 11-2017; 9-15 0023-6438 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/56511 |
identifier_str_mv |
Melo Milanez, Karla Danielle Tavares de; Nóbrega, Thiago César Araújo; Silva Do Nascimento, Danielle; Insausti, Matías; Fernández Band, Beatriz Susana; et al.; Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach; Elsevier Science; LWT - Food Science and Technology; 85; Parte A; 11-2017; 9-15 0023-6438 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0023643817304644 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.lwt.2017.06.060 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980974466433024 |
score |
12.993085 |