Regression models based on new local strategies for near infrared spectroscopic data
- Autores
- Allegrini, Franco; Fernández Pierna, J. A.; Fragoso, W. D.; Olivieri, Alejandro Cesar; Baeten, V.; Dardenne, P.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, a comparative study of two novel algorithms to perform sample selection in local regression based on Partial Least Squares Regression (PLS) is presented. These methodologies were applied for Near Infrared Spectroscopy (NIRS) quantification of five major constituents in corn seeds and are compared and contrasted with global PLS calibrations. Validation results show a significant improvement in the prediction quality when local models implemented by the proposed algorithms are applied to large data bases.
Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Fernández Pierna, J. A.. Walloon Agricultural Research Centre; Bélgica
Fil: Fragoso, W. D.. Universidade Federal da Paraíba; Brasil
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Baeten, V.. Walloon Agricultural Research Centre; Bélgica
Fil: Dardenne, P.. Walloon Agricultural Research Centre; Bélgica - Materia
-
Local Regression Models
Near Infrared Spectroscopy
Partial Least Squares Regression - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/52648
Ver los metadatos del registro completo
id |
CONICETDig_c5d149aac4944a977d9524048da82ae7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/52648 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Regression models based on new local strategies for near infrared spectroscopic dataAllegrini, FrancoFernández Pierna, J. A.Fragoso, W. D.Olivieri, Alejandro CesarBaeten, V.Dardenne, P.Local Regression ModelsNear Infrared SpectroscopyPartial Least Squares Regressionhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In this work, a comparative study of two novel algorithms to perform sample selection in local regression based on Partial Least Squares Regression (PLS) is presented. These methodologies were applied for Near Infrared Spectroscopy (NIRS) quantification of five major constituents in corn seeds and are compared and contrasted with global PLS calibrations. Validation results show a significant improvement in the prediction quality when local models implemented by the proposed algorithms are applied to large data bases.Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Fernández Pierna, J. A.. Walloon Agricultural Research Centre; BélgicaFil: Fragoso, W. D.. Universidade Federal da Paraíba; BrasilFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Baeten, V.. Walloon Agricultural Research Centre; BélgicaFil: Dardenne, P.. Walloon Agricultural Research Centre; BélgicaElsevier Science2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52648Allegrini, Franco; Fernández Pierna, J. A.; Fragoso, W. D.; Olivieri, Alejandro Cesar; Baeten, V.; et al.; Regression models based on new local strategies for near infrared spectroscopic data; Elsevier Science; Analytica Chimica Acta; 933; 8-2016; 50-580003-2670CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aca.2016.07.006info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003267016308273info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:09Zoai:ri.conicet.gov.ar:11336/52648instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:09.861CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Regression models based on new local strategies for near infrared spectroscopic data |
title |
Regression models based on new local strategies for near infrared spectroscopic data |
spellingShingle |
Regression models based on new local strategies for near infrared spectroscopic data Allegrini, Franco Local Regression Models Near Infrared Spectroscopy Partial Least Squares Regression |
title_short |
Regression models based on new local strategies for near infrared spectroscopic data |
title_full |
Regression models based on new local strategies for near infrared spectroscopic data |
title_fullStr |
Regression models based on new local strategies for near infrared spectroscopic data |
title_full_unstemmed |
Regression models based on new local strategies for near infrared spectroscopic data |
title_sort |
Regression models based on new local strategies for near infrared spectroscopic data |
dc.creator.none.fl_str_mv |
Allegrini, Franco Fernández Pierna, J. A. Fragoso, W. D. Olivieri, Alejandro Cesar Baeten, V. Dardenne, P. |
author |
Allegrini, Franco |
author_facet |
Allegrini, Franco Fernández Pierna, J. A. Fragoso, W. D. Olivieri, Alejandro Cesar Baeten, V. Dardenne, P. |
author_role |
author |
author2 |
Fernández Pierna, J. A. Fragoso, W. D. Olivieri, Alejandro Cesar Baeten, V. Dardenne, P. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Local Regression Models Near Infrared Spectroscopy Partial Least Squares Regression |
topic |
Local Regression Models Near Infrared Spectroscopy Partial Least Squares Regression |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, a comparative study of two novel algorithms to perform sample selection in local regression based on Partial Least Squares Regression (PLS) is presented. These methodologies were applied for Near Infrared Spectroscopy (NIRS) quantification of five major constituents in corn seeds and are compared and contrasted with global PLS calibrations. Validation results show a significant improvement in the prediction quality when local models implemented by the proposed algorithms are applied to large data bases. Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina Fil: Fernández Pierna, J. A.. Walloon Agricultural Research Centre; Bélgica Fil: Fragoso, W. D.. Universidade Federal da Paraíba; Brasil Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina Fil: Baeten, V.. Walloon Agricultural Research Centre; Bélgica Fil: Dardenne, P.. Walloon Agricultural Research Centre; Bélgica |
description |
In this work, a comparative study of two novel algorithms to perform sample selection in local regression based on Partial Least Squares Regression (PLS) is presented. These methodologies were applied for Near Infrared Spectroscopy (NIRS) quantification of five major constituents in corn seeds and are compared and contrasted with global PLS calibrations. Validation results show a significant improvement in the prediction quality when local models implemented by the proposed algorithms are applied to large data bases. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/52648 Allegrini, Franco; Fernández Pierna, J. A.; Fragoso, W. D.; Olivieri, Alejandro Cesar; Baeten, V.; et al.; Regression models based on new local strategies for near infrared spectroscopic data; Elsevier Science; Analytica Chimica Acta; 933; 8-2016; 50-58 0003-2670 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/52648 |
identifier_str_mv |
Allegrini, Franco; Fernández Pierna, J. A.; Fragoso, W. D.; Olivieri, Alejandro Cesar; Baeten, V.; et al.; Regression models based on new local strategies for near infrared spectroscopic data; Elsevier Science; Analytica Chimica Acta; 933; 8-2016; 50-58 0003-2670 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aca.2016.07.006 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003267016308273 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614045497294848 |
score |
13.070432 |