Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oil
- Autores
- Cerretani, Lorenzo; Maggio, Ruben Mariano; Barnaba, Carlo; Gallina Toschi, Tullia; Chiavaro, Emma
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A chemometric approach based on partial least (PLS) square methodology was applied to unfolded differential scanning calorimetry data obtained by 63 samples of different vegetable oils (58 extra virgin olive oils, one olive and one pomace olive oil, three seed oils) to evaluate fatty acid composition (palmitic, stearic, oleic and linoleic acids, saturated (SFA), mono (MUFA) and polysaturated (PUFA) percentages, oleic/linoleic and unsaturated/saturated ratios). All calibration models exhibited satisfactory figures of merit. Palmitic and oleic acids, as well as SFA showed very good correlation coefficients and low root mean square error values in both calibration and validation sets. Satisfactory results were also obtained for MUFA, PUFA, stearic and linoleic acids, O/L ratio in terms of percentage recoveries and relative standard deviations. No systematic and bias errors were detected in the prediction of validation samples. This novel approach could provide statistically similar results to those given by traditional official procedures, with the advantages of a very rapid and environmentally friendly methodology.
Fil: Cerretani, Lorenzo. Universidad de Bologna; Italia
Fil: Maggio, Ruben Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina
Fil: Barnaba, Carlo. Università di Parma; Italia
Fil: Gallina Toschi, Tullia. Universidad de Bologna; Italia
Fil: Chiavaro, Emma. Università di Parma; Italia - Materia
-
DIFFERENTIAL SCANNING CALORIMETRY
FATTY ACID
OLIVE OIL
PARTIAL LEAST SQUARE REGRESSION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/127059
Ver los metadatos del registro completo
id |
CONICETDig_281df90ae43bfc37f482238c9df160b6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/127059 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oilCerretani, LorenzoMaggio, Ruben MarianoBarnaba, CarloGallina Toschi, TulliaChiavaro, EmmaDIFFERENTIAL SCANNING CALORIMETRYFATTY ACIDOLIVE OILPARTIAL LEAST SQUARE REGRESSIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A chemometric approach based on partial least (PLS) square methodology was applied to unfolded differential scanning calorimetry data obtained by 63 samples of different vegetable oils (58 extra virgin olive oils, one olive and one pomace olive oil, three seed oils) to evaluate fatty acid composition (palmitic, stearic, oleic and linoleic acids, saturated (SFA), mono (MUFA) and polysaturated (PUFA) percentages, oleic/linoleic and unsaturated/saturated ratios). All calibration models exhibited satisfactory figures of merit. Palmitic and oleic acids, as well as SFA showed very good correlation coefficients and low root mean square error values in both calibration and validation sets. Satisfactory results were also obtained for MUFA, PUFA, stearic and linoleic acids, O/L ratio in terms of percentage recoveries and relative standard deviations. No systematic and bias errors were detected in the prediction of validation samples. This novel approach could provide statistically similar results to those given by traditional official procedures, with the advantages of a very rapid and environmentally friendly methodology.Fil: Cerretani, Lorenzo. Universidad de Bologna; ItaliaFil: Maggio, Ruben Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; ArgentinaFil: Barnaba, Carlo. Università di Parma; ItaliaFil: Gallina Toschi, Tullia. Universidad de Bologna; ItaliaFil: Chiavaro, Emma. Università di Parma; ItaliaElsevier2011-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/127059Cerretani, Lorenzo; Maggio, Ruben Mariano; Barnaba, Carlo; Gallina Toschi, Tullia; Chiavaro, Emma; Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oil; Elsevier; Food Chemistry; 127; 4; 8-2011; 1899-19040308-8146CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0308814611002998info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodchem.2011.02.041info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:39:58Zoai:ri.conicet.gov.ar:11336/127059instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:39:58.804CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oil |
title |
Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oil |
spellingShingle |
Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oil Cerretani, Lorenzo DIFFERENTIAL SCANNING CALORIMETRY FATTY ACID OLIVE OIL PARTIAL LEAST SQUARE REGRESSION |
title_short |
Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oil |
title_full |
Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oil |
title_fullStr |
Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oil |
title_full_unstemmed |
Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oil |
title_sort |
Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oil |
dc.creator.none.fl_str_mv |
Cerretani, Lorenzo Maggio, Ruben Mariano Barnaba, Carlo Gallina Toschi, Tullia Chiavaro, Emma |
author |
Cerretani, Lorenzo |
author_facet |
Cerretani, Lorenzo Maggio, Ruben Mariano Barnaba, Carlo Gallina Toschi, Tullia Chiavaro, Emma |
author_role |
author |
author2 |
Maggio, Ruben Mariano Barnaba, Carlo Gallina Toschi, Tullia Chiavaro, Emma |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
DIFFERENTIAL SCANNING CALORIMETRY FATTY ACID OLIVE OIL PARTIAL LEAST SQUARE REGRESSION |
topic |
DIFFERENTIAL SCANNING CALORIMETRY FATTY ACID OLIVE OIL PARTIAL LEAST SQUARE REGRESSION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A chemometric approach based on partial least (PLS) square methodology was applied to unfolded differential scanning calorimetry data obtained by 63 samples of different vegetable oils (58 extra virgin olive oils, one olive and one pomace olive oil, three seed oils) to evaluate fatty acid composition (palmitic, stearic, oleic and linoleic acids, saturated (SFA), mono (MUFA) and polysaturated (PUFA) percentages, oleic/linoleic and unsaturated/saturated ratios). All calibration models exhibited satisfactory figures of merit. Palmitic and oleic acids, as well as SFA showed very good correlation coefficients and low root mean square error values in both calibration and validation sets. Satisfactory results were also obtained for MUFA, PUFA, stearic and linoleic acids, O/L ratio in terms of percentage recoveries and relative standard deviations. No systematic and bias errors were detected in the prediction of validation samples. This novel approach could provide statistically similar results to those given by traditional official procedures, with the advantages of a very rapid and environmentally friendly methodology. Fil: Cerretani, Lorenzo. Universidad de Bologna; Italia Fil: Maggio, Ruben Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Departamento de Química Analítica; Argentina Fil: Barnaba, Carlo. Università di Parma; Italia Fil: Gallina Toschi, Tullia. Universidad de Bologna; Italia Fil: Chiavaro, Emma. Università di Parma; Italia |
description |
A chemometric approach based on partial least (PLS) square methodology was applied to unfolded differential scanning calorimetry data obtained by 63 samples of different vegetable oils (58 extra virgin olive oils, one olive and one pomace olive oil, three seed oils) to evaluate fatty acid composition (palmitic, stearic, oleic and linoleic acids, saturated (SFA), mono (MUFA) and polysaturated (PUFA) percentages, oleic/linoleic and unsaturated/saturated ratios). All calibration models exhibited satisfactory figures of merit. Palmitic and oleic acids, as well as SFA showed very good correlation coefficients and low root mean square error values in both calibration and validation sets. Satisfactory results were also obtained for MUFA, PUFA, stearic and linoleic acids, O/L ratio in terms of percentage recoveries and relative standard deviations. No systematic and bias errors were detected in the prediction of validation samples. This novel approach could provide statistically similar results to those given by traditional official procedures, with the advantages of a very rapid and environmentally friendly methodology. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/127059 Cerretani, Lorenzo; Maggio, Ruben Mariano; Barnaba, Carlo; Gallina Toschi, Tullia; Chiavaro, Emma; Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oil; Elsevier; Food Chemistry; 127; 4; 8-2011; 1899-1904 0308-8146 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/127059 |
identifier_str_mv |
Cerretani, Lorenzo; Maggio, Ruben Mariano; Barnaba, Carlo; Gallina Toschi, Tullia; Chiavaro, Emma; Application of partial least square regression to differential scanning calorimetry data for fatty acid quantitation in olive oil; Elsevier; Food Chemistry; 127; 4; 8-2011; 1899-1904 0308-8146 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0308814611002998 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodchem.2011.02.041 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082888620048384 |
score |
13.22299 |