P-means and the solution of a functional equation involving Cauchy differences
- Autores
- Berrone, Lucio Renato
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Solutions to the functional equation f(x+y)−f(x)−f(y)=2f(Φ(x,y)),x,y>0, are sought for the admissible pairs (f,Φ)(f,Φ) constituted by a strictly monotonic function f and a strictly increasing in both variables mean ΦΦ . A related class of means, P-means, is introduced, studied and then employed in solving (1) under additional hypotheses on ΦΦ . For instance, Ger has proved that the unique P-mean which is also quasiarithmetic is the geometric mean G(x,y)=xy−−√G(x,y)=xy . An elementary proof to this result is given in this paper. Moreover, as a consequence of a fundamental result on the uniqueness of representation of P-means it is proved that the geometric mean G is the unique homogeneous P-mean.
Fil: Berrone, Lucio Renato. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingenieria y Agrimensura. Escuela de Ingenieria Electrónica. Laboratorio de Acústica y Electroacústica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; Argentina - Materia
-
Functional Equations
Cauchy Difference
Means
P-Means - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13390
Ver los metadatos del registro completo
id |
CONICETDig_db1ced6a28598d670b332028dc46409c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13390 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
P-means and the solution of a functional equation involving Cauchy differencesBerrone, Lucio RenatoFunctional EquationsCauchy DifferenceMeansP-Meanshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Solutions to the functional equation f(x+y)−f(x)−f(y)=2f(Φ(x,y)),x,y>0, are sought for the admissible pairs (f,Φ)(f,Φ) constituted by a strictly monotonic function f and a strictly increasing in both variables mean ΦΦ . A related class of means, P-means, is introduced, studied and then employed in solving (1) under additional hypotheses on ΦΦ . For instance, Ger has proved that the unique P-mean which is also quasiarithmetic is the geometric mean G(x,y)=xy−−√G(x,y)=xy . An elementary proof to this result is given in this paper. Moreover, as a consequence of a fundamental result on the uniqueness of representation of P-means it is proved that the geometric mean G is the unique homogeneous P-mean.Fil: Berrone, Lucio Renato. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingenieria y Agrimensura. Escuela de Ingenieria Electrónica. Laboratorio de Acústica y Electroacústica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; ArgentinaSpringer2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13390Berrone, Lucio Renato; P-means and the solution of a functional equation involving Cauchy differences; Springer; Results In Mathematics; 68; 3; 11-2015; 375–3931422-63831420-9012enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00025-015-0446-2info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00025-015-0446-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:00:59Zoai:ri.conicet.gov.ar:11336/13390instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:00:59.317CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
P-means and the solution of a functional equation involving Cauchy differences |
title |
P-means and the solution of a functional equation involving Cauchy differences |
spellingShingle |
P-means and the solution of a functional equation involving Cauchy differences Berrone, Lucio Renato Functional Equations Cauchy Difference Means P-Means |
title_short |
P-means and the solution of a functional equation involving Cauchy differences |
title_full |
P-means and the solution of a functional equation involving Cauchy differences |
title_fullStr |
P-means and the solution of a functional equation involving Cauchy differences |
title_full_unstemmed |
P-means and the solution of a functional equation involving Cauchy differences |
title_sort |
P-means and the solution of a functional equation involving Cauchy differences |
dc.creator.none.fl_str_mv |
Berrone, Lucio Renato |
author |
Berrone, Lucio Renato |
author_facet |
Berrone, Lucio Renato |
author_role |
author |
dc.subject.none.fl_str_mv |
Functional Equations Cauchy Difference Means P-Means |
topic |
Functional Equations Cauchy Difference Means P-Means |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Solutions to the functional equation f(x+y)−f(x)−f(y)=2f(Φ(x,y)),x,y>0, are sought for the admissible pairs (f,Φ)(f,Φ) constituted by a strictly monotonic function f and a strictly increasing in both variables mean ΦΦ . A related class of means, P-means, is introduced, studied and then employed in solving (1) under additional hypotheses on ΦΦ . For instance, Ger has proved that the unique P-mean which is also quasiarithmetic is the geometric mean G(x,y)=xy−−√G(x,y)=xy . An elementary proof to this result is given in this paper. Moreover, as a consequence of a fundamental result on the uniqueness of representation of P-means it is proved that the geometric mean G is the unique homogeneous P-mean. Fil: Berrone, Lucio Renato. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingenieria y Agrimensura. Escuela de Ingenieria Electrónica. Laboratorio de Acústica y Electroacústica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; Argentina |
description |
Solutions to the functional equation f(x+y)−f(x)−f(y)=2f(Φ(x,y)),x,y>0, are sought for the admissible pairs (f,Φ)(f,Φ) constituted by a strictly monotonic function f and a strictly increasing in both variables mean ΦΦ . A related class of means, P-means, is introduced, studied and then employed in solving (1) under additional hypotheses on ΦΦ . For instance, Ger has proved that the unique P-mean which is also quasiarithmetic is the geometric mean G(x,y)=xy−−√G(x,y)=xy . An elementary proof to this result is given in this paper. Moreover, as a consequence of a fundamental result on the uniqueness of representation of P-means it is proved that the geometric mean G is the unique homogeneous P-mean. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13390 Berrone, Lucio Renato; P-means and the solution of a functional equation involving Cauchy differences; Springer; Results In Mathematics; 68; 3; 11-2015; 375–393 1422-6383 1420-9012 |
url |
http://hdl.handle.net/11336/13390 |
identifier_str_mv |
Berrone, Lucio Renato; P-means and the solution of a functional equation involving Cauchy differences; Springer; Results In Mathematics; 68; 3; 11-2015; 375–393 1422-6383 1420-9012 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00025-015-0446-2 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00025-015-0446-2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842979917996752896 |
score |
12.48226 |