P-means and the solution of a functional equation involving Cauchy differences

Autores
Berrone, Lucio Renato
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Solutions to the functional equation f(x+y)−f(x)−f(y)=2f(Φ(x,y)),x,y>0, are sought for the admissible pairs (f,Φ)(f,Φ) constituted by a strictly monotonic function f and a strictly increasing in both variables mean ΦΦ . A related class of means, P-means, is introduced, studied and then employed in solving (1) under additional hypotheses on ΦΦ . For instance, Ger has proved that the unique P-mean which is also quasiarithmetic is the geometric mean G(x,y)=xy−−√G(x,y)=xy . An elementary proof to this result is given in this paper. Moreover, as a consequence of a fundamental result on the uniqueness of representation of P-means it is proved that the geometric mean G is the unique homogeneous P-mean.
Fil: Berrone, Lucio Renato. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingenieria y Agrimensura. Escuela de Ingenieria Electrónica. Laboratorio de Acústica y Electroacústica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; Argentina
Materia
Functional Equations
Cauchy Difference
Means
P-Means
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/13390

id CONICETDig_db1ced6a28598d670b332028dc46409c
oai_identifier_str oai:ri.conicet.gov.ar:11336/13390
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling P-means and the solution of a functional equation involving Cauchy differencesBerrone, Lucio RenatoFunctional EquationsCauchy DifferenceMeansP-Meanshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Solutions to the functional equation f(x+y)−f(x)−f(y)=2f(Φ(x,y)),x,y>0, are sought for the admissible pairs (f,Φ)(f,Φ) constituted by a strictly monotonic function f and a strictly increasing in both variables mean ΦΦ . A related class of means, P-means, is introduced, studied and then employed in solving (1) under additional hypotheses on ΦΦ . For instance, Ger has proved that the unique P-mean which is also quasiarithmetic is the geometric mean G(x,y)=xy−−√G(x,y)=xy . An elementary proof to this result is given in this paper. Moreover, as a consequence of a fundamental result on the uniqueness of representation of P-means it is proved that the geometric mean G is the unique homogeneous P-mean.Fil: Berrone, Lucio Renato. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingenieria y Agrimensura. Escuela de Ingenieria Electrónica. Laboratorio de Acústica y Electroacústica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; ArgentinaSpringer2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13390Berrone, Lucio Renato; P-means and the solution of a functional equation involving Cauchy differences; Springer; Results In Mathematics; 68; 3; 11-2015; 375–3931422-63831420-9012enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00025-015-0446-2info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00025-015-0446-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:00:59Zoai:ri.conicet.gov.ar:11336/13390instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:00:59.317CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv P-means and the solution of a functional equation involving Cauchy differences
title P-means and the solution of a functional equation involving Cauchy differences
spellingShingle P-means and the solution of a functional equation involving Cauchy differences
Berrone, Lucio Renato
Functional Equations
Cauchy Difference
Means
P-Means
title_short P-means and the solution of a functional equation involving Cauchy differences
title_full P-means and the solution of a functional equation involving Cauchy differences
title_fullStr P-means and the solution of a functional equation involving Cauchy differences
title_full_unstemmed P-means and the solution of a functional equation involving Cauchy differences
title_sort P-means and the solution of a functional equation involving Cauchy differences
dc.creator.none.fl_str_mv Berrone, Lucio Renato
author Berrone, Lucio Renato
author_facet Berrone, Lucio Renato
author_role author
dc.subject.none.fl_str_mv Functional Equations
Cauchy Difference
Means
P-Means
topic Functional Equations
Cauchy Difference
Means
P-Means
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Solutions to the functional equation f(x+y)−f(x)−f(y)=2f(Φ(x,y)),x,y>0, are sought for the admissible pairs (f,Φ)(f,Φ) constituted by a strictly monotonic function f and a strictly increasing in both variables mean ΦΦ . A related class of means, P-means, is introduced, studied and then employed in solving (1) under additional hypotheses on ΦΦ . For instance, Ger has proved that the unique P-mean which is also quasiarithmetic is the geometric mean G(x,y)=xy−−√G(x,y)=xy . An elementary proof to this result is given in this paper. Moreover, as a consequence of a fundamental result on the uniqueness of representation of P-means it is proved that the geometric mean G is the unique homogeneous P-mean.
Fil: Berrone, Lucio Renato. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingenieria y Agrimensura. Escuela de Ingenieria Electrónica. Laboratorio de Acústica y Electroacústica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; Argentina
description Solutions to the functional equation f(x+y)−f(x)−f(y)=2f(Φ(x,y)),x,y>0, are sought for the admissible pairs (f,Φ)(f,Φ) constituted by a strictly monotonic function f and a strictly increasing in both variables mean ΦΦ . A related class of means, P-means, is introduced, studied and then employed in solving (1) under additional hypotheses on ΦΦ . For instance, Ger has proved that the unique P-mean which is also quasiarithmetic is the geometric mean G(x,y)=xy−−√G(x,y)=xy . An elementary proof to this result is given in this paper. Moreover, as a consequence of a fundamental result on the uniqueness of representation of P-means it is proved that the geometric mean G is the unique homogeneous P-mean.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/13390
Berrone, Lucio Renato; P-means and the solution of a functional equation involving Cauchy differences; Springer; Results In Mathematics; 68; 3; 11-2015; 375–393
1422-6383
1420-9012
url http://hdl.handle.net/11336/13390
identifier_str_mv Berrone, Lucio Renato; P-means and the solution of a functional equation involving Cauchy differences; Springer; Results In Mathematics; 68; 3; 11-2015; 375–393
1422-6383
1420-9012
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00025-015-0446-2
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00025-015-0446-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842979917996752896
score 12.48226