On well-posedness of the Cauchy problem for the wave equation in static spherically symmetric spacetimes
- Autores
- Gamboa Saravi, Ricardo Enrique; Sanmartino, Marcela; Tchamitchian, Philippe
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give simple conditions implying the well-posedness of the Cauchy problem for the propagation of classical scalar fields in general (n + 2)-dimensional static and spherically symmetric spacetimes. They are related to the properties of the underlying spatial part of the wave operator, one of which being the standard essentially self-adjointness. However, in many examples the spatial part of the wave operator turns out to be not essentially self-adjoint, but it does satisfy a weaker property that we call here quasi-essentially self-adjointness, which is enough to ensure the desired well-posedness. This is why we also characterize this second property. We state abstract results, then general results for a class of operators encompassing many examples in the literature, and we finish with the explicit analysis of some of them.
Fil: Gamboa Saravi, Ricardo Enrique. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Sanmartino, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Tchamitchian, Philippe. Centre National de la Recherche Scientifique; Francia. Aix-Marseille Université; Francia - Materia
- Cauchy problem
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/23632
Ver los metadatos del registro completo
id |
CONICETDig_f513cf7b682e6735bf74fcc3b4b3ed5a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/23632 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On well-posedness of the Cauchy problem for the wave equation in static spherically symmetric spacetimesGamboa Saravi, Ricardo EnriqueSanmartino, MarcelaTchamitchian, PhilippeCauchy problemhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We give simple conditions implying the well-posedness of the Cauchy problem for the propagation of classical scalar fields in general (n + 2)-dimensional static and spherically symmetric spacetimes. They are related to the properties of the underlying spatial part of the wave operator, one of which being the standard essentially self-adjointness. However, in many examples the spatial part of the wave operator turns out to be not essentially self-adjoint, but it does satisfy a weaker property that we call here quasi-essentially self-adjointness, which is enough to ensure the desired well-posedness. This is why we also characterize this second property. We state abstract results, then general results for a class of operators encompassing many examples in the literature, and we finish with the explicit analysis of some of them.Fil: Gamboa Saravi, Ricardo Enrique. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Sanmartino, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Tchamitchian, Philippe. Centre National de la Recherche Scientifique; Francia. Aix-Marseille Université; FranciaIOP Publishing2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23632Gamboa Saravi, Ricardo Enrique; Sanmartino, Marcela; Tchamitchian, Philippe ; On well-posedness of the Cauchy problem for the wave equation in static spherically symmetric spacetimes; IOP Publishing; Classical and Quantum Gravity; 30; 23; 10-2013; 235014-2350440264-9381CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0264-9381/30/23/235014info:eu-repo/semantics/altIdentifier/doi/10.1088/0264-9381/30/23/235014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:35Zoai:ri.conicet.gov.ar:11336/23632instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:35.66CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On well-posedness of the Cauchy problem for the wave equation in static spherically symmetric spacetimes |
title |
On well-posedness of the Cauchy problem for the wave equation in static spherically symmetric spacetimes |
spellingShingle |
On well-posedness of the Cauchy problem for the wave equation in static spherically symmetric spacetimes Gamboa Saravi, Ricardo Enrique Cauchy problem |
title_short |
On well-posedness of the Cauchy problem for the wave equation in static spherically symmetric spacetimes |
title_full |
On well-posedness of the Cauchy problem for the wave equation in static spherically symmetric spacetimes |
title_fullStr |
On well-posedness of the Cauchy problem for the wave equation in static spherically symmetric spacetimes |
title_full_unstemmed |
On well-posedness of the Cauchy problem for the wave equation in static spherically symmetric spacetimes |
title_sort |
On well-posedness of the Cauchy problem for the wave equation in static spherically symmetric spacetimes |
dc.creator.none.fl_str_mv |
Gamboa Saravi, Ricardo Enrique Sanmartino, Marcela Tchamitchian, Philippe |
author |
Gamboa Saravi, Ricardo Enrique |
author_facet |
Gamboa Saravi, Ricardo Enrique Sanmartino, Marcela Tchamitchian, Philippe |
author_role |
author |
author2 |
Sanmartino, Marcela Tchamitchian, Philippe |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Cauchy problem |
topic |
Cauchy problem |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We give simple conditions implying the well-posedness of the Cauchy problem for the propagation of classical scalar fields in general (n + 2)-dimensional static and spherically symmetric spacetimes. They are related to the properties of the underlying spatial part of the wave operator, one of which being the standard essentially self-adjointness. However, in many examples the spatial part of the wave operator turns out to be not essentially self-adjoint, but it does satisfy a weaker property that we call here quasi-essentially self-adjointness, which is enough to ensure the desired well-posedness. This is why we also characterize this second property. We state abstract results, then general results for a class of operators encompassing many examples in the literature, and we finish with the explicit analysis of some of them. Fil: Gamboa Saravi, Ricardo Enrique. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Sanmartino, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Tchamitchian, Philippe. Centre National de la Recherche Scientifique; Francia. Aix-Marseille Université; Francia |
description |
We give simple conditions implying the well-posedness of the Cauchy problem for the propagation of classical scalar fields in general (n + 2)-dimensional static and spherically symmetric spacetimes. They are related to the properties of the underlying spatial part of the wave operator, one of which being the standard essentially self-adjointness. However, in many examples the spatial part of the wave operator turns out to be not essentially self-adjoint, but it does satisfy a weaker property that we call here quasi-essentially self-adjointness, which is enough to ensure the desired well-posedness. This is why we also characterize this second property. We state abstract results, then general results for a class of operators encompassing many examples in the literature, and we finish with the explicit analysis of some of them. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/23632 Gamboa Saravi, Ricardo Enrique; Sanmartino, Marcela; Tchamitchian, Philippe ; On well-posedness of the Cauchy problem for the wave equation in static spherically symmetric spacetimes; IOP Publishing; Classical and Quantum Gravity; 30; 23; 10-2013; 235014-235044 0264-9381 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/23632 |
identifier_str_mv |
Gamboa Saravi, Ricardo Enrique; Sanmartino, Marcela; Tchamitchian, Philippe ; On well-posedness of the Cauchy problem for the wave equation in static spherically symmetric spacetimes; IOP Publishing; Classical and Quantum Gravity; 30; 23; 10-2013; 235014-235044 0264-9381 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0264-9381/30/23/235014 info:eu-repo/semantics/altIdentifier/doi/10.1088/0264-9381/30/23/235014 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268982039543808 |
score |
13.13397 |