The Aumann functional equation for general weighting procedures
- Autores
- Berrone, Lucio Renato
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The functional equation of composite type M(M(x; M(x; y)); M(M(x; y); y)) = M(x; y) arose in the course of the studies on the problem of extension and restriction of the number of arguments of a mean M performed by G. Aumann at the third decade of the past century. A solution to (1) in the analytic case was ulteriorly obtained by Aumann himself and remained as a noteworthy characterization of analytic quasiarithmetic means. An ample generalization of equation (1) which involves general weighting operators is considered in this paper. Under mild conditions on the regularity of the involved means, the general solution to this generalized equation is obtained for a particularly tractable class of weighting operators.
Fil: Berrone, Lucio Renato. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingenieria y Agrimensura. Escuela de Ingenieria Electrónica. Laboratorio de Acústica y Electroacústica; Argentina - Materia
-
Functional Equations
Aumann Functional Equation
Weightings
Means - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13389
Ver los metadatos del registro completo
id |
CONICETDig_4d27326db8edd52cc3bf51840ad4e087 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13389 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Aumann functional equation for general weighting proceduresBerrone, Lucio RenatoFunctional EquationsAumann Functional EquationWeightingsMeanshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The functional equation of composite type M(M(x; M(x; y)); M(M(x; y); y)) = M(x; y) arose in the course of the studies on the problem of extension and restriction of the number of arguments of a mean M performed by G. Aumann at the third decade of the past century. A solution to (1) in the analytic case was ulteriorly obtained by Aumann himself and remained as a noteworthy characterization of analytic quasiarithmetic means. An ample generalization of equation (1) which involves general weighting operators is considered in this paper. Under mild conditions on the regularity of the involved means, the general solution to this generalized equation is obtained for a particularly tractable class of weighting operators.Fil: Berrone, Lucio Renato. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingenieria y Agrimensura. Escuela de Ingenieria Electrónica. Laboratorio de Acústica y Electroacústica; ArgentinaSpringer2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13389Berrone, Lucio Renato; The Aumann functional equation for general weighting procedures; Springer; Aequationes Mathematicae; 89; 4; 8-2015; 1051–10730001-90541420-8903enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00010-015-0344-4info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00010-015-0344-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:57Zoai:ri.conicet.gov.ar:11336/13389instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:57.32CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Aumann functional equation for general weighting procedures |
title |
The Aumann functional equation for general weighting procedures |
spellingShingle |
The Aumann functional equation for general weighting procedures Berrone, Lucio Renato Functional Equations Aumann Functional Equation Weightings Means |
title_short |
The Aumann functional equation for general weighting procedures |
title_full |
The Aumann functional equation for general weighting procedures |
title_fullStr |
The Aumann functional equation for general weighting procedures |
title_full_unstemmed |
The Aumann functional equation for general weighting procedures |
title_sort |
The Aumann functional equation for general weighting procedures |
dc.creator.none.fl_str_mv |
Berrone, Lucio Renato |
author |
Berrone, Lucio Renato |
author_facet |
Berrone, Lucio Renato |
author_role |
author |
dc.subject.none.fl_str_mv |
Functional Equations Aumann Functional Equation Weightings Means |
topic |
Functional Equations Aumann Functional Equation Weightings Means |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The functional equation of composite type M(M(x; M(x; y)); M(M(x; y); y)) = M(x; y) arose in the course of the studies on the problem of extension and restriction of the number of arguments of a mean M performed by G. Aumann at the third decade of the past century. A solution to (1) in the analytic case was ulteriorly obtained by Aumann himself and remained as a noteworthy characterization of analytic quasiarithmetic means. An ample generalization of equation (1) which involves general weighting operators is considered in this paper. Under mild conditions on the regularity of the involved means, the general solution to this generalized equation is obtained for a particularly tractable class of weighting operators. Fil: Berrone, Lucio Renato. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingenieria y Agrimensura. Escuela de Ingenieria Electrónica. Laboratorio de Acústica y Electroacústica; Argentina |
description |
The functional equation of composite type M(M(x; M(x; y)); M(M(x; y); y)) = M(x; y) arose in the course of the studies on the problem of extension and restriction of the number of arguments of a mean M performed by G. Aumann at the third decade of the past century. A solution to (1) in the analytic case was ulteriorly obtained by Aumann himself and remained as a noteworthy characterization of analytic quasiarithmetic means. An ample generalization of equation (1) which involves general weighting operators is considered in this paper. Under mild conditions on the regularity of the involved means, the general solution to this generalized equation is obtained for a particularly tractable class of weighting operators. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13389 Berrone, Lucio Renato; The Aumann functional equation for general weighting procedures; Springer; Aequationes Mathematicae; 89; 4; 8-2015; 1051–1073 0001-9054 1420-8903 |
url |
http://hdl.handle.net/11336/13389 |
identifier_str_mv |
Berrone, Lucio Renato; The Aumann functional equation for general weighting procedures; Springer; Aequationes Mathematicae; 89; 4; 8-2015; 1051–1073 0001-9054 1420-8903 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00010-015-0344-4 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00010-015-0344-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613161848668160 |
score |
13.070432 |