Generalized Cauchy means

Autores
Berrone, Lucio Renato
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given two means M and N, the operator MM,NMM,N assigning to a given mean μ the mean MM,N(μ)(x,y)=M(μ(x,N(x,y)),μ(N(x,y),y)) was defined in Berrone and Moro (Aequationes Math 60:1–14, 2000) in connection with Cauchy means: the Cauchy mean generated by the pair f, g of continuous and strictly monotonic functions is the unique solution μ to the fixed point equation MA(f),A(g)(μ)=μ, where A(f) and A(g) are the quasiarithmetic means respectively generated by f and g. In this article, the operator MM,NMM,N is studied under less restrictive conditions and a general fixed point theorem is derived from an explicit formula for the iterates MnM,NMM,Nn . The concept of class of generalized Cauchy means associated to a given family of mixing pairs of means is introduced and some distinguished families of pairs are presented. The question of equality in these classes of means remains a challenging open problem.
Fil: Berrone, Lucio Renato. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Cauchy means
Iteration of operators
Fixed points
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/11457

id CONICETDig_63ee409af9e45944b1f8ffe463f79a05
oai_identifier_str oai:ri.conicet.gov.ar:11336/11457
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Generalized Cauchy meansBerrone, Lucio RenatoCauchy meansIteration of operatorsFixed pointshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given two means M and N, the operator MM,NMM,N assigning to a given mean μ the mean MM,N(μ)(x,y)=M(μ(x,N(x,y)),μ(N(x,y),y)) was defined in Berrone and Moro (Aequationes Math 60:1–14, 2000) in connection with Cauchy means: the Cauchy mean generated by the pair f, g of continuous and strictly monotonic functions is the unique solution μ to the fixed point equation MA(f),A(g)(μ)=μ, where A(f) and A(g) are the quasiarithmetic means respectively generated by f and g. In this article, the operator MM,NMM,N is studied under less restrictive conditions and a general fixed point theorem is derived from an explicit formula for the iterates MnM,NMM,Nn . The concept of class of generalized Cauchy means associated to a given family of mixing pairs of means is introduced and some distinguished families of pairs are presented. The question of equality in these classes of means remains a challenging open problem.Fil: Berrone, Lucio Renato. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11457Berrone, Lucio Renato; Generalized Cauchy means; Springer; Aequationes Mathematicae; 90; 2; 1-2015; 307-3280001-9054enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00010-015-0341-7info:eu-repo/semantics/altIdentifier/doi/10.1007/s00010-015-0341-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:58Zoai:ri.conicet.gov.ar:11336/11457instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:58.632CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Generalized Cauchy means
title Generalized Cauchy means
spellingShingle Generalized Cauchy means
Berrone, Lucio Renato
Cauchy means
Iteration of operators
Fixed points
title_short Generalized Cauchy means
title_full Generalized Cauchy means
title_fullStr Generalized Cauchy means
title_full_unstemmed Generalized Cauchy means
title_sort Generalized Cauchy means
dc.creator.none.fl_str_mv Berrone, Lucio Renato
author Berrone, Lucio Renato
author_facet Berrone, Lucio Renato
author_role author
dc.subject.none.fl_str_mv Cauchy means
Iteration of operators
Fixed points
topic Cauchy means
Iteration of operators
Fixed points
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given two means M and N, the operator MM,NMM,N assigning to a given mean μ the mean MM,N(μ)(x,y)=M(μ(x,N(x,y)),μ(N(x,y),y)) was defined in Berrone and Moro (Aequationes Math 60:1–14, 2000) in connection with Cauchy means: the Cauchy mean generated by the pair f, g of continuous and strictly monotonic functions is the unique solution μ to the fixed point equation MA(f),A(g)(μ)=μ, where A(f) and A(g) are the quasiarithmetic means respectively generated by f and g. In this article, the operator MM,NMM,N is studied under less restrictive conditions and a general fixed point theorem is derived from an explicit formula for the iterates MnM,NMM,Nn . The concept of class of generalized Cauchy means associated to a given family of mixing pairs of means is introduced and some distinguished families of pairs are presented. The question of equality in these classes of means remains a challenging open problem.
Fil: Berrone, Lucio Renato. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Given two means M and N, the operator MM,NMM,N assigning to a given mean μ the mean MM,N(μ)(x,y)=M(μ(x,N(x,y)),μ(N(x,y),y)) was defined in Berrone and Moro (Aequationes Math 60:1–14, 2000) in connection with Cauchy means: the Cauchy mean generated by the pair f, g of continuous and strictly monotonic functions is the unique solution μ to the fixed point equation MA(f),A(g)(μ)=μ, where A(f) and A(g) are the quasiarithmetic means respectively generated by f and g. In this article, the operator MM,NMM,N is studied under less restrictive conditions and a general fixed point theorem is derived from an explicit formula for the iterates MnM,NMM,Nn . The concept of class of generalized Cauchy means associated to a given family of mixing pairs of means is introduced and some distinguished families of pairs are presented. The question of equality in these classes of means remains a challenging open problem.
publishDate 2015
dc.date.none.fl_str_mv 2015-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/11457
Berrone, Lucio Renato; Generalized Cauchy means; Springer; Aequationes Mathematicae; 90; 2; 1-2015; 307-328
0001-9054
url http://hdl.handle.net/11336/11457
identifier_str_mv Berrone, Lucio Renato; Generalized Cauchy means; Springer; Aequationes Mathematicae; 90; 2; 1-2015; 307-328
0001-9054
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00010-015-0341-7
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00010-015-0341-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269553667604480
score 13.13397