Generalized Cauchy means
- Autores
- Berrone, Lucio Renato
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given two means M and N, the operator MM,NMM,N assigning to a given mean μ the mean MM,N(μ)(x,y)=M(μ(x,N(x,y)),μ(N(x,y),y)) was defined in Berrone and Moro (Aequationes Math 60:1–14, 2000) in connection with Cauchy means: the Cauchy mean generated by the pair f, g of continuous and strictly monotonic functions is the unique solution μ to the fixed point equation MA(f),A(g)(μ)=μ, where A(f) and A(g) are the quasiarithmetic means respectively generated by f and g. In this article, the operator MM,NMM,N is studied under less restrictive conditions and a general fixed point theorem is derived from an explicit formula for the iterates MnM,NMM,Nn . The concept of class of generalized Cauchy means associated to a given family of mixing pairs of means is introduced and some distinguished families of pairs are presented. The question of equality in these classes of means remains a challenging open problem.
Fil: Berrone, Lucio Renato. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Cauchy means
Iteration of operators
Fixed points - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/11457
Ver los metadatos del registro completo
id |
CONICETDig_63ee409af9e45944b1f8ffe463f79a05 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/11457 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Generalized Cauchy meansBerrone, Lucio RenatoCauchy meansIteration of operatorsFixed pointshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given two means M and N, the operator MM,NMM,N assigning to a given mean μ the mean MM,N(μ)(x,y)=M(μ(x,N(x,y)),μ(N(x,y),y)) was defined in Berrone and Moro (Aequationes Math 60:1–14, 2000) in connection with Cauchy means: the Cauchy mean generated by the pair f, g of continuous and strictly monotonic functions is the unique solution μ to the fixed point equation MA(f),A(g)(μ)=μ, where A(f) and A(g) are the quasiarithmetic means respectively generated by f and g. In this article, the operator MM,NMM,N is studied under less restrictive conditions and a general fixed point theorem is derived from an explicit formula for the iterates MnM,NMM,Nn . The concept of class of generalized Cauchy means associated to a given family of mixing pairs of means is introduced and some distinguished families of pairs are presented. The question of equality in these classes of means remains a challenging open problem.Fil: Berrone, Lucio Renato. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11457Berrone, Lucio Renato; Generalized Cauchy means; Springer; Aequationes Mathematicae; 90; 2; 1-2015; 307-3280001-9054enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00010-015-0341-7info:eu-repo/semantics/altIdentifier/doi/10.1007/s00010-015-0341-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:58Zoai:ri.conicet.gov.ar:11336/11457instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:58.632CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Generalized Cauchy means |
title |
Generalized Cauchy means |
spellingShingle |
Generalized Cauchy means Berrone, Lucio Renato Cauchy means Iteration of operators Fixed points |
title_short |
Generalized Cauchy means |
title_full |
Generalized Cauchy means |
title_fullStr |
Generalized Cauchy means |
title_full_unstemmed |
Generalized Cauchy means |
title_sort |
Generalized Cauchy means |
dc.creator.none.fl_str_mv |
Berrone, Lucio Renato |
author |
Berrone, Lucio Renato |
author_facet |
Berrone, Lucio Renato |
author_role |
author |
dc.subject.none.fl_str_mv |
Cauchy means Iteration of operators Fixed points |
topic |
Cauchy means Iteration of operators Fixed points |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given two means M and N, the operator MM,NMM,N assigning to a given mean μ the mean MM,N(μ)(x,y)=M(μ(x,N(x,y)),μ(N(x,y),y)) was defined in Berrone and Moro (Aequationes Math 60:1–14, 2000) in connection with Cauchy means: the Cauchy mean generated by the pair f, g of continuous and strictly monotonic functions is the unique solution μ to the fixed point equation MA(f),A(g)(μ)=μ, where A(f) and A(g) are the quasiarithmetic means respectively generated by f and g. In this article, the operator MM,NMM,N is studied under less restrictive conditions and a general fixed point theorem is derived from an explicit formula for the iterates MnM,NMM,Nn . The concept of class of generalized Cauchy means associated to a given family of mixing pairs of means is introduced and some distinguished families of pairs are presented. The question of equality in these classes of means remains a challenging open problem. Fil: Berrone, Lucio Renato. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Given two means M and N, the operator MM,NMM,N assigning to a given mean μ the mean MM,N(μ)(x,y)=M(μ(x,N(x,y)),μ(N(x,y),y)) was defined in Berrone and Moro (Aequationes Math 60:1–14, 2000) in connection with Cauchy means: the Cauchy mean generated by the pair f, g of continuous and strictly monotonic functions is the unique solution μ to the fixed point equation MA(f),A(g)(μ)=μ, where A(f) and A(g) are the quasiarithmetic means respectively generated by f and g. In this article, the operator MM,NMM,N is studied under less restrictive conditions and a general fixed point theorem is derived from an explicit formula for the iterates MnM,NMM,Nn . The concept of class of generalized Cauchy means associated to a given family of mixing pairs of means is introduced and some distinguished families of pairs are presented. The question of equality in these classes of means remains a challenging open problem. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/11457 Berrone, Lucio Renato; Generalized Cauchy means; Springer; Aequationes Mathematicae; 90; 2; 1-2015; 307-328 0001-9054 |
url |
http://hdl.handle.net/11336/11457 |
identifier_str_mv |
Berrone, Lucio Renato; Generalized Cauchy means; Springer; Aequationes Mathematicae; 90; 2; 1-2015; 307-328 0001-9054 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00010-015-0341-7 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00010-015-0341-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269553667604480 |
score |
13.13397 |