Theory of braided Hopf crossed products

Autores
Guccione, Jorge Alberto; Guccione, Juan Jose
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We define a type of crossed product over braided Hopf algebras, which generalizes the ones introduced by Blattner, Cohen and Montgomery and Doi and Takeuchi, and we study some of its properties. For instance, we prove a Maschke´s Theorem for these new crossed products and under suitable hypothesis we construct a natural Morita context which extends the one obtained by Cohen, Fischman and Montgomery.
Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
HOPF ALGEBRA
CROSSED PRODUCTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/109500

id CONICETDig_da57220855e628a55ae0b6c5bf8d3eca
oai_identifier_str oai:ri.conicet.gov.ar:11336/109500
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Theory of braided Hopf crossed productsGuccione, Jorge AlbertoGuccione, Juan JoseHOPF ALGEBRACROSSED PRODUCTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We define a type of crossed product over braided Hopf algebras, which generalizes the ones introduced by Blattner, Cohen and Montgomery and Doi and Takeuchi, and we study some of its properties. For instance, we prove a Maschke´s Theorem for these new crossed products and under suitable hypothesis we construct a natural Morita context which extends the one obtained by Cohen, Fischman and Montgomery.Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAcademic Press Inc Elsevier Science2003-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109500Guccione, Jorge Alberto; Guccione, Juan Jose; Theory of braided Hopf crossed products; Academic Press Inc Elsevier Science; Journal of Algebra; 261; 1; 3-2003; 54-1010021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002186930200546Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/S0021-8693(02)00546-Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:05Zoai:ri.conicet.gov.ar:11336/109500instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:05.684CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Theory of braided Hopf crossed products
title Theory of braided Hopf crossed products
spellingShingle Theory of braided Hopf crossed products
Guccione, Jorge Alberto
HOPF ALGEBRA
CROSSED PRODUCTS
title_short Theory of braided Hopf crossed products
title_full Theory of braided Hopf crossed products
title_fullStr Theory of braided Hopf crossed products
title_full_unstemmed Theory of braided Hopf crossed products
title_sort Theory of braided Hopf crossed products
dc.creator.none.fl_str_mv Guccione, Jorge Alberto
Guccione, Juan Jose
author Guccione, Jorge Alberto
author_facet Guccione, Jorge Alberto
Guccione, Juan Jose
author_role author
author2 Guccione, Juan Jose
author2_role author
dc.subject.none.fl_str_mv HOPF ALGEBRA
CROSSED PRODUCTS
topic HOPF ALGEBRA
CROSSED PRODUCTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We define a type of crossed product over braided Hopf algebras, which generalizes the ones introduced by Blattner, Cohen and Montgomery and Doi and Takeuchi, and we study some of its properties. For instance, we prove a Maschke´s Theorem for these new crossed products and under suitable hypothesis we construct a natural Morita context which extends the one obtained by Cohen, Fischman and Montgomery.
Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description We define a type of crossed product over braided Hopf algebras, which generalizes the ones introduced by Blattner, Cohen and Montgomery and Doi and Takeuchi, and we study some of its properties. For instance, we prove a Maschke´s Theorem for these new crossed products and under suitable hypothesis we construct a natural Morita context which extends the one obtained by Cohen, Fischman and Montgomery.
publishDate 2003
dc.date.none.fl_str_mv 2003-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/109500
Guccione, Jorge Alberto; Guccione, Juan Jose; Theory of braided Hopf crossed products; Academic Press Inc Elsevier Science; Journal of Algebra; 261; 1; 3-2003; 54-101
0021-8693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/109500
identifier_str_mv Guccione, Jorge Alberto; Guccione, Juan Jose; Theory of braided Hopf crossed products; Academic Press Inc Elsevier Science; Journal of Algebra; 261; 1; 3-2003; 54-101
0021-8693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002186930200546X
info:eu-repo/semantics/altIdentifier/doi/10.1016/S0021-8693(02)00546-X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613202927681536
score 13.070432