Brzeziński's Crossed Products and Braided Hopf Crossed Products

Autores
Di Luigi, Constanza; Guccione, Jorge Alberto; Guccione, Juan Jose
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Recently, we introduced a notion of braided Hopf crossed product which generalizes the notion of classical Hopf crossed product defined independently by Blattner, Cohen and Montgomery and by Doi and Takeuchi. A very much general concept of crossed product is indebted to Brzezinski. In this paper we give a suficient condition for a Brzeziński's crossed product be a braided Hopf crossed product. Majid prove that the quantum double of a quasitriangular Hopf algebra is isomorphic to a classical Hopf crossed product. As an application of our result we obtain a generalization of Majid´s Theorem.
Fil: Di Luigi, Constanza. No especifíca;
Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
HOPF ALGEBRAS
CROSSED PRODUCTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/109857

id CONICETDig_d104a928a8d4782b9a6ebea41a1e0524
oai_identifier_str oai:ri.conicet.gov.ar:11336/109857
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Brzeziński's Crossed Products and Braided Hopf Crossed ProductsDi Luigi, ConstanzaGuccione, Jorge AlbertoGuccione, Juan JoseHOPF ALGEBRASCROSSED PRODUCTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Recently, we introduced a notion of braided Hopf crossed product which generalizes the notion of classical Hopf crossed product defined independently by Blattner, Cohen and Montgomery and by Doi and Takeuchi. A very much general concept of crossed product is indebted to Brzezinski. In this paper we give a suficient condition for a Brzeziński's crossed product be a braided Hopf crossed product. Majid prove that the quantum double of a quasitriangular Hopf algebra is isomorphic to a classical Hopf crossed product. As an application of our result we obtain a generalization of Majid´s Theorem.Fil: Di Luigi, Constanza. No especifíca; Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaTaylor & Francis2004-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/109857Di Luigi, Constanza; Guccione, Jorge Alberto; Guccione, Juan Jose; Brzeziński's Crossed Products and Braided Hopf Crossed Products; Taylor & Francis; Communications In Algebra; 32; 9; 12-2004; 3563-35800092-7872CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1081/AGB-120039631info:eu-repo/semantics/altIdentifier/doi/10.1081/AGB-120039631info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:28Zoai:ri.conicet.gov.ar:11336/109857instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:28.648CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Brzeziński's Crossed Products and Braided Hopf Crossed Products
title Brzeziński's Crossed Products and Braided Hopf Crossed Products
spellingShingle Brzeziński's Crossed Products and Braided Hopf Crossed Products
Di Luigi, Constanza
HOPF ALGEBRAS
CROSSED PRODUCTS
title_short Brzeziński's Crossed Products and Braided Hopf Crossed Products
title_full Brzeziński's Crossed Products and Braided Hopf Crossed Products
title_fullStr Brzeziński's Crossed Products and Braided Hopf Crossed Products
title_full_unstemmed Brzeziński's Crossed Products and Braided Hopf Crossed Products
title_sort Brzeziński's Crossed Products and Braided Hopf Crossed Products
dc.creator.none.fl_str_mv Di Luigi, Constanza
Guccione, Jorge Alberto
Guccione, Juan Jose
author Di Luigi, Constanza
author_facet Di Luigi, Constanza
Guccione, Jorge Alberto
Guccione, Juan Jose
author_role author
author2 Guccione, Jorge Alberto
Guccione, Juan Jose
author2_role author
author
dc.subject.none.fl_str_mv HOPF ALGEBRAS
CROSSED PRODUCTS
topic HOPF ALGEBRAS
CROSSED PRODUCTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Recently, we introduced a notion of braided Hopf crossed product which generalizes the notion of classical Hopf crossed product defined independently by Blattner, Cohen and Montgomery and by Doi and Takeuchi. A very much general concept of crossed product is indebted to Brzezinski. In this paper we give a suficient condition for a Brzeziński's crossed product be a braided Hopf crossed product. Majid prove that the quantum double of a quasitriangular Hopf algebra is isomorphic to a classical Hopf crossed product. As an application of our result we obtain a generalization of Majid´s Theorem.
Fil: Di Luigi, Constanza. No especifíca;
Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description Recently, we introduced a notion of braided Hopf crossed product which generalizes the notion of classical Hopf crossed product defined independently by Blattner, Cohen and Montgomery and by Doi and Takeuchi. A very much general concept of crossed product is indebted to Brzezinski. In this paper we give a suficient condition for a Brzeziński's crossed product be a braided Hopf crossed product. Majid prove that the quantum double of a quasitriangular Hopf algebra is isomorphic to a classical Hopf crossed product. As an application of our result we obtain a generalization of Majid´s Theorem.
publishDate 2004
dc.date.none.fl_str_mv 2004-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/109857
Di Luigi, Constanza; Guccione, Jorge Alberto; Guccione, Juan Jose; Brzeziński's Crossed Products and Braided Hopf Crossed Products; Taylor & Francis; Communications In Algebra; 32; 9; 12-2004; 3563-3580
0092-7872
CONICET Digital
CONICET
url http://hdl.handle.net/11336/109857
identifier_str_mv Di Luigi, Constanza; Guccione, Jorge Alberto; Guccione, Juan Jose; Brzeziński's Crossed Products and Braided Hopf Crossed Products; Taylor & Francis; Communications In Algebra; 32; 9; 12-2004; 3563-3580
0092-7872
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1081/AGB-120039631
info:eu-repo/semantics/altIdentifier/doi/10.1081/AGB-120039631
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614362168295424
score 13.070432