Theory of braided Hopf crossed products
- Autores
- Guccione, J.A.; Guccione, J.J.
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We define a type of crossed product over braided Hopf algebras, which generalizes the ones introduced by Blattner, Cohen, and Montgomery, and Doi and Takeuchi, and we study some of its properties. For instance, we prove Maschke's Theorem for these new crossed products and we construct a natural Morita context which extends the one obtained by Cohen, Fischman, and Montgomery. © 2003 Elsevier Science (USA). All rights reserved.
Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Algebra 2003;261(1):54-101
- Materia
-
Crossed products
Hopf algebra - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00218693_v261_n1_p54_Guccione
Ver los metadatos del registro completo
id |
BDUBAFCEN_28e826fd015070659425cf355aa6a9ff |
---|---|
oai_identifier_str |
paperaa:paper_00218693_v261_n1_p54_Guccione |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Theory of braided Hopf crossed productsGuccione, J.A.Guccione, J.J.Crossed productsHopf algebraWe define a type of crossed product over braided Hopf algebras, which generalizes the ones introduced by Blattner, Cohen, and Montgomery, and Doi and Takeuchi, and we study some of its properties. For instance, we prove Maschke's Theorem for these new crossed products and we construct a natural Morita context which extends the one obtained by Cohen, Fischman, and Montgomery. © 2003 Elsevier Science (USA). All rights reserved.Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2003info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00218693_v261_n1_p54_GuccioneJ. Algebra 2003;261(1):54-101reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:10Zpaperaa:paper_00218693_v261_n1_p54_GuccioneInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:11.736Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Theory of braided Hopf crossed products |
title |
Theory of braided Hopf crossed products |
spellingShingle |
Theory of braided Hopf crossed products Guccione, J.A. Crossed products Hopf algebra |
title_short |
Theory of braided Hopf crossed products |
title_full |
Theory of braided Hopf crossed products |
title_fullStr |
Theory of braided Hopf crossed products |
title_full_unstemmed |
Theory of braided Hopf crossed products |
title_sort |
Theory of braided Hopf crossed products |
dc.creator.none.fl_str_mv |
Guccione, J.A. Guccione, J.J. |
author |
Guccione, J.A. |
author_facet |
Guccione, J.A. Guccione, J.J. |
author_role |
author |
author2 |
Guccione, J.J. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Crossed products Hopf algebra |
topic |
Crossed products Hopf algebra |
dc.description.none.fl_txt_mv |
We define a type of crossed product over braided Hopf algebras, which generalizes the ones introduced by Blattner, Cohen, and Montgomery, and Doi and Takeuchi, and we study some of its properties. For instance, we prove Maschke's Theorem for these new crossed products and we construct a natural Morita context which extends the one obtained by Cohen, Fischman, and Montgomery. © 2003 Elsevier Science (USA). All rights reserved. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We define a type of crossed product over braided Hopf algebras, which generalizes the ones introduced by Blattner, Cohen, and Montgomery, and Doi and Takeuchi, and we study some of its properties. For instance, we prove Maschke's Theorem for these new crossed products and we construct a natural Morita context which extends the one obtained by Cohen, Fischman, and Montgomery. © 2003 Elsevier Science (USA). All rights reserved. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00218693_v261_n1_p54_Guccione |
url |
http://hdl.handle.net/20.500.12110/paper_00218693_v261_n1_p54_Guccione |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Algebra 2003;261(1):54-101 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1846142846969577472 |
score |
12.712165 |