Theory of braided Hopf crossed products

Autores
Guccione, J.A.; Guccione, J.J.
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We define a type of crossed product over braided Hopf algebras, which generalizes the ones introduced by Blattner, Cohen, and Montgomery, and Doi and Takeuchi, and we study some of its properties. For instance, we prove Maschke's Theorem for these new crossed products and we construct a natural Morita context which extends the one obtained by Cohen, Fischman, and Montgomery. © 2003 Elsevier Science (USA). All rights reserved.
Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Algebra 2003;261(1):54-101
Materia
Crossed products
Hopf algebra
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00218693_v261_n1_p54_Guccione

id BDUBAFCEN_28e826fd015070659425cf355aa6a9ff
oai_identifier_str paperaa:paper_00218693_v261_n1_p54_Guccione
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Theory of braided Hopf crossed productsGuccione, J.A.Guccione, J.J.Crossed productsHopf algebraWe define a type of crossed product over braided Hopf algebras, which generalizes the ones introduced by Blattner, Cohen, and Montgomery, and Doi and Takeuchi, and we study some of its properties. For instance, we prove Maschke's Theorem for these new crossed products and we construct a natural Morita context which extends the one obtained by Cohen, Fischman, and Montgomery. © 2003 Elsevier Science (USA). All rights reserved.Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2003info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00218693_v261_n1_p54_GuccioneJ. Algebra 2003;261(1):54-101reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:10Zpaperaa:paper_00218693_v261_n1_p54_GuccioneInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:11.736Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Theory of braided Hopf crossed products
title Theory of braided Hopf crossed products
spellingShingle Theory of braided Hopf crossed products
Guccione, J.A.
Crossed products
Hopf algebra
title_short Theory of braided Hopf crossed products
title_full Theory of braided Hopf crossed products
title_fullStr Theory of braided Hopf crossed products
title_full_unstemmed Theory of braided Hopf crossed products
title_sort Theory of braided Hopf crossed products
dc.creator.none.fl_str_mv Guccione, J.A.
Guccione, J.J.
author Guccione, J.A.
author_facet Guccione, J.A.
Guccione, J.J.
author_role author
author2 Guccione, J.J.
author2_role author
dc.subject.none.fl_str_mv Crossed products
Hopf algebra
topic Crossed products
Hopf algebra
dc.description.none.fl_txt_mv We define a type of crossed product over braided Hopf algebras, which generalizes the ones introduced by Blattner, Cohen, and Montgomery, and Doi and Takeuchi, and we study some of its properties. For instance, we prove Maschke's Theorem for these new crossed products and we construct a natural Morita context which extends the one obtained by Cohen, Fischman, and Montgomery. © 2003 Elsevier Science (USA). All rights reserved.
Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We define a type of crossed product over braided Hopf algebras, which generalizes the ones introduced by Blattner, Cohen, and Montgomery, and Doi and Takeuchi, and we study some of its properties. For instance, we prove Maschke's Theorem for these new crossed products and we construct a natural Morita context which extends the one obtained by Cohen, Fischman, and Montgomery. © 2003 Elsevier Science (USA). All rights reserved.
publishDate 2003
dc.date.none.fl_str_mv 2003
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00218693_v261_n1_p54_Guccione
url http://hdl.handle.net/20.500.12110/paper_00218693_v261_n1_p54_Guccione
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Algebra 2003;261(1):54-101
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846142846969577472
score 12.712165