Cyclic homology of Hopf crossed products

Autores
Carboni, G.; Guccione, J.A.; Guccione, J.J.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We obtain a mixed complex, simpler than the canonical one, given the Hochschild, cyclic, negative and periodic homology of a crossed product E = A #f H, where H is an arbitrary Hopf algebra and f is a convolution invertible cocycle with values in A. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A which is stable under the action of H, and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homology of E relative to K. As an application we obtain two spectral sequences converging to the cyclic homology of E relative to K. The first one works in the general setting and the second one (which generalizes those previously found by several authors) works when f takes its values in K. © 2009 Elsevier Inc. All rights reserved.
Fil:Carboni, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Adv. Math. 2010;223(3):840-872
Materia
Cyclic homology
Hopf crossed products
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00018708_v223_n3_p840_Carboni

id BDUBAFCEN_e9cc92824ba272ae1f28128120c80c72
oai_identifier_str paperaa:paper_00018708_v223_n3_p840_Carboni
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Cyclic homology of Hopf crossed productsCarboni, G.Guccione, J.A.Guccione, J.J.Cyclic homologyHopf crossed productsWe obtain a mixed complex, simpler than the canonical one, given the Hochschild, cyclic, negative and periodic homology of a crossed product E = A #f H, where H is an arbitrary Hopf algebra and f is a convolution invertible cocycle with values in A. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A which is stable under the action of H, and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homology of E relative to K. As an application we obtain two spectral sequences converging to the cyclic homology of E relative to K. The first one works in the general setting and the second one (which generalizes those previously found by several authors) works when f takes its values in K. © 2009 Elsevier Inc. All rights reserved.Fil:Carboni, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00018708_v223_n3_p840_CarboniAdv. Math. 2010;223(3):840-872reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-18T10:09:19Zpaperaa:paper_00018708_v223_n3_p840_CarboniInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-18 10:09:21.024Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Cyclic homology of Hopf crossed products
title Cyclic homology of Hopf crossed products
spellingShingle Cyclic homology of Hopf crossed products
Carboni, G.
Cyclic homology
Hopf crossed products
title_short Cyclic homology of Hopf crossed products
title_full Cyclic homology of Hopf crossed products
title_fullStr Cyclic homology of Hopf crossed products
title_full_unstemmed Cyclic homology of Hopf crossed products
title_sort Cyclic homology of Hopf crossed products
dc.creator.none.fl_str_mv Carboni, G.
Guccione, J.A.
Guccione, J.J.
author Carboni, G.
author_facet Carboni, G.
Guccione, J.A.
Guccione, J.J.
author_role author
author2 Guccione, J.A.
Guccione, J.J.
author2_role author
author
dc.subject.none.fl_str_mv Cyclic homology
Hopf crossed products
topic Cyclic homology
Hopf crossed products
dc.description.none.fl_txt_mv We obtain a mixed complex, simpler than the canonical one, given the Hochschild, cyclic, negative and periodic homology of a crossed product E = A #f H, where H is an arbitrary Hopf algebra and f is a convolution invertible cocycle with values in A. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A which is stable under the action of H, and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homology of E relative to K. As an application we obtain two spectral sequences converging to the cyclic homology of E relative to K. The first one works in the general setting and the second one (which generalizes those previously found by several authors) works when f takes its values in K. © 2009 Elsevier Inc. All rights reserved.
Fil:Carboni, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We obtain a mixed complex, simpler than the canonical one, given the Hochschild, cyclic, negative and periodic homology of a crossed product E = A #f H, where H is an arbitrary Hopf algebra and f is a convolution invertible cocycle with values in A. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A which is stable under the action of H, and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homology of E relative to K. As an application we obtain two spectral sequences converging to the cyclic homology of E relative to K. The first one works in the general setting and the second one (which generalizes those previously found by several authors) works when f takes its values in K. © 2009 Elsevier Inc. All rights reserved.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00018708_v223_n3_p840_Carboni
url http://hdl.handle.net/20.500.12110/paper_00018708_v223_n3_p840_Carboni
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Adv. Math. 2010;223(3):840-872
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1843608736578404352
score 13.001348