Approximation algorithms for clique transversals on some graph classes

Autores
Lin, Min Chih; Vasiliev, Saveliy
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given a graph G=(V,E) a clique is a maximal subset of pairwise adjacent vertices of V of size at least 2. A clique transversal is a subset of vertices that intersects the vertex set of each clique of G. Finding a minimum-cardinality clique transversal is NP-hard for the following classes: planar, line and bounded degree graphs. For line graphs we present a 3-approximation for the unweighted case and a 4-approximation for the weighted case with nonnegative weights; a ⌈(Δ(G)+1)/2 ⌉(-approximation for bounded degree graphs and a 3-approximation for planar graphs.
Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vasiliev, Saveliy. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
Materia
Approximation Algorithms
Clique Transversal
Graph Classes
Np-Hard
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/59528

id CONICETDig_d8b78cb68be0151e752b7688f2b73af3
oai_identifier_str oai:ri.conicet.gov.ar:11336/59528
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Approximation algorithms for clique transversals on some graph classesLin, Min ChihVasiliev, SaveliyApproximation AlgorithmsClique TransversalGraph ClassesNp-Hardhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Given a graph G=(V,E) a clique is a maximal subset of pairwise adjacent vertices of V of size at least 2. A clique transversal is a subset of vertices that intersects the vertex set of each clique of G. Finding a minimum-cardinality clique transversal is NP-hard for the following classes: planar, line and bounded degree graphs. For line graphs we present a 3-approximation for the unweighted case and a 4-approximation for the weighted case with nonnegative weights; a ⌈(Δ(G)+1)/2 ⌉(-approximation for bounded degree graphs and a 3-approximation for planar graphs.Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vasiliev, Saveliy. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaElsevier Science2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59528Lin, Min Chih; Vasiliev, Saveliy; Approximation algorithms for clique transversals on some graph classes; Elsevier Science; Information Processing Letters; 115; 9; 9-2015; 667-6700020-0190CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ipl.2015.04.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0020019015000630info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:34:17Zoai:ri.conicet.gov.ar:11336/59528instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:34:17.675CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Approximation algorithms for clique transversals on some graph classes
title Approximation algorithms for clique transversals on some graph classes
spellingShingle Approximation algorithms for clique transversals on some graph classes
Lin, Min Chih
Approximation Algorithms
Clique Transversal
Graph Classes
Np-Hard
title_short Approximation algorithms for clique transversals on some graph classes
title_full Approximation algorithms for clique transversals on some graph classes
title_fullStr Approximation algorithms for clique transversals on some graph classes
title_full_unstemmed Approximation algorithms for clique transversals on some graph classes
title_sort Approximation algorithms for clique transversals on some graph classes
dc.creator.none.fl_str_mv Lin, Min Chih
Vasiliev, Saveliy
author Lin, Min Chih
author_facet Lin, Min Chih
Vasiliev, Saveliy
author_role author
author2 Vasiliev, Saveliy
author2_role author
dc.subject.none.fl_str_mv Approximation Algorithms
Clique Transversal
Graph Classes
Np-Hard
topic Approximation Algorithms
Clique Transversal
Graph Classes
Np-Hard
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given a graph G=(V,E) a clique is a maximal subset of pairwise adjacent vertices of V of size at least 2. A clique transversal is a subset of vertices that intersects the vertex set of each clique of G. Finding a minimum-cardinality clique transversal is NP-hard for the following classes: planar, line and bounded degree graphs. For line graphs we present a 3-approximation for the unweighted case and a 4-approximation for the weighted case with nonnegative weights; a ⌈(Δ(G)+1)/2 ⌉(-approximation for bounded degree graphs and a 3-approximation for planar graphs.
Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vasiliev, Saveliy. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
description Given a graph G=(V,E) a clique is a maximal subset of pairwise adjacent vertices of V of size at least 2. A clique transversal is a subset of vertices that intersects the vertex set of each clique of G. Finding a minimum-cardinality clique transversal is NP-hard for the following classes: planar, line and bounded degree graphs. For line graphs we present a 3-approximation for the unweighted case and a 4-approximation for the weighted case with nonnegative weights; a ⌈(Δ(G)+1)/2 ⌉(-approximation for bounded degree graphs and a 3-approximation for planar graphs.
publishDate 2015
dc.date.none.fl_str_mv 2015-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/59528
Lin, Min Chih; Vasiliev, Saveliy; Approximation algorithms for clique transversals on some graph classes; Elsevier Science; Information Processing Letters; 115; 9; 9-2015; 667-670
0020-0190
CONICET Digital
CONICET
url http://hdl.handle.net/11336/59528
identifier_str_mv Lin, Min Chih; Vasiliev, Saveliy; Approximation algorithms for clique transversals on some graph classes; Elsevier Science; Information Processing Letters; 115; 9; 9-2015; 667-670
0020-0190
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ipl.2015.04.003
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0020019015000630
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083471802368000
score 13.22299