Approximation algorithms for clique transversals on some graph classes
- Autores
- Lin, Min Chih; Vasiliev, Saveliy
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a graph G=(V,E) a clique is a maximal subset of pairwise adjacent vertices of V of size at least 2. A clique transversal is a subset of vertices that intersects the vertex set of each clique of G. Finding a minimum-cardinality clique transversal is NP-hard for the following classes: planar, line and bounded degree graphs. For line graphs we present a 3-approximation for the unweighted case and a 4-approximation for the weighted case with nonnegative weights; a ⌈(Δ(G)+1)/2 ⌉(-approximation for bounded degree graphs and a 3-approximation for planar graphs.
Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vasiliev, Saveliy. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina - Materia
-
Approximation Algorithms
Clique Transversal
Graph Classes
Np-Hard - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59528
Ver los metadatos del registro completo
id |
CONICETDig_d8b78cb68be0151e752b7688f2b73af3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59528 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Approximation algorithms for clique transversals on some graph classesLin, Min ChihVasiliev, SaveliyApproximation AlgorithmsClique TransversalGraph ClassesNp-Hardhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Given a graph G=(V,E) a clique is a maximal subset of pairwise adjacent vertices of V of size at least 2. A clique transversal is a subset of vertices that intersects the vertex set of each clique of G. Finding a minimum-cardinality clique transversal is NP-hard for the following classes: planar, line and bounded degree graphs. For line graphs we present a 3-approximation for the unweighted case and a 4-approximation for the weighted case with nonnegative weights; a ⌈(Δ(G)+1)/2 ⌉(-approximation for bounded degree graphs and a 3-approximation for planar graphs.Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vasiliev, Saveliy. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaElsevier Science2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59528Lin, Min Chih; Vasiliev, Saveliy; Approximation algorithms for clique transversals on some graph classes; Elsevier Science; Information Processing Letters; 115; 9; 9-2015; 667-6700020-0190CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ipl.2015.04.003info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0020019015000630info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:34:17Zoai:ri.conicet.gov.ar:11336/59528instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:34:17.675CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Approximation algorithms for clique transversals on some graph classes |
title |
Approximation algorithms for clique transversals on some graph classes |
spellingShingle |
Approximation algorithms for clique transversals on some graph classes Lin, Min Chih Approximation Algorithms Clique Transversal Graph Classes Np-Hard |
title_short |
Approximation algorithms for clique transversals on some graph classes |
title_full |
Approximation algorithms for clique transversals on some graph classes |
title_fullStr |
Approximation algorithms for clique transversals on some graph classes |
title_full_unstemmed |
Approximation algorithms for clique transversals on some graph classes |
title_sort |
Approximation algorithms for clique transversals on some graph classes |
dc.creator.none.fl_str_mv |
Lin, Min Chih Vasiliev, Saveliy |
author |
Lin, Min Chih |
author_facet |
Lin, Min Chih Vasiliev, Saveliy |
author_role |
author |
author2 |
Vasiliev, Saveliy |
author2_role |
author |
dc.subject.none.fl_str_mv |
Approximation Algorithms Clique Transversal Graph Classes Np-Hard |
topic |
Approximation Algorithms Clique Transversal Graph Classes Np-Hard |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a graph G=(V,E) a clique is a maximal subset of pairwise adjacent vertices of V of size at least 2. A clique transversal is a subset of vertices that intersects the vertex set of each clique of G. Finding a minimum-cardinality clique transversal is NP-hard for the following classes: planar, line and bounded degree graphs. For line graphs we present a 3-approximation for the unweighted case and a 4-approximation for the weighted case with nonnegative weights; a ⌈(Δ(G)+1)/2 ⌉(-approximation for bounded degree graphs and a 3-approximation for planar graphs. Fil: Lin, Min Chih. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vasiliev, Saveliy. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina |
description |
Given a graph G=(V,E) a clique is a maximal subset of pairwise adjacent vertices of V of size at least 2. A clique transversal is a subset of vertices that intersects the vertex set of each clique of G. Finding a minimum-cardinality clique transversal is NP-hard for the following classes: planar, line and bounded degree graphs. For line graphs we present a 3-approximation for the unweighted case and a 4-approximation for the weighted case with nonnegative weights; a ⌈(Δ(G)+1)/2 ⌉(-approximation for bounded degree graphs and a 3-approximation for planar graphs. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59528 Lin, Min Chih; Vasiliev, Saveliy; Approximation algorithms for clique transversals on some graph classes; Elsevier Science; Information Processing Letters; 115; 9; 9-2015; 667-670 0020-0190 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59528 |
identifier_str_mv |
Lin, Min Chih; Vasiliev, Saveliy; Approximation algorithms for clique transversals on some graph classes; Elsevier Science; Information Processing Letters; 115; 9; 9-2015; 667-670 0020-0190 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ipl.2015.04.003 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0020019015000630 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083471802368000 |
score |
13.22299 |