Graph classes with and without powers of bounded clique-width

Autores
Bonomo, Flavia; Grippo, Luciano Norberto; Milanič, Martin; Safe, Martin Dario
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We initiate the study of graph classes of power-bounded clique-width, that is, graph classes for which there exist integers k and ℓ such that the kth powers of the graphs are of clique-width at most ℓ. We give sufficient and necessary conditions for this property. As our main results, we characterize graph classes of power-bounded clique-width within classes defined by either one forbidden induced subgraph, or by two connected forbidden induced subgraphs. We also show that for every positive integer k, there exists a graph class such that the kth powers of graphs in the class form a class of bounded clique-width, while this is not the case for any smaller power.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Grippo, Luciano Norberto. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Milanič, Martin. University Of Primorska; Eslovenia
Fil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; Argentina
Materia
Clique-Width
Hereditary Graph Class
Power of A Graph
Power-Bounded Clique-Width
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55546

id CONICETDig_a05865ea304c68f57c9cdd4b937c94ca
oai_identifier_str oai:ri.conicet.gov.ar:11336/55546
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Graph classes with and without powers of bounded clique-widthBonomo, FlaviaGrippo, Luciano NorbertoMilanič, MartinSafe, Martin DarioClique-WidthHereditary Graph ClassPower of A GraphPower-Bounded Clique-Widthhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We initiate the study of graph classes of power-bounded clique-width, that is, graph classes for which there exist integers k and ℓ such that the kth powers of the graphs are of clique-width at most ℓ. We give sufficient and necessary conditions for this property. As our main results, we characterize graph classes of power-bounded clique-width within classes defined by either one forbidden induced subgraph, or by two connected forbidden induced subgraphs. We also show that for every positive integer k, there exists a graph class such that the kth powers of graphs in the class form a class of bounded clique-width, while this is not the case for any smaller power.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Grippo, Luciano Norberto. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Milanič, Martin. University Of Primorska; EsloveniaFil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; ArgentinaElsevier Science2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55546Bonomo, Flavia; Grippo, Luciano Norberto; Milanič, Martin; Safe, Martin Dario; Graph classes with and without powers of bounded clique-width; Elsevier Science; Discrete Applied Mathematics; 199; 1-2016; 3-150166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2015.06.010info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X15002966info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:24Zoai:ri.conicet.gov.ar:11336/55546instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:24.485CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Graph classes with and without powers of bounded clique-width
title Graph classes with and without powers of bounded clique-width
spellingShingle Graph classes with and without powers of bounded clique-width
Bonomo, Flavia
Clique-Width
Hereditary Graph Class
Power of A Graph
Power-Bounded Clique-Width
title_short Graph classes with and without powers of bounded clique-width
title_full Graph classes with and without powers of bounded clique-width
title_fullStr Graph classes with and without powers of bounded clique-width
title_full_unstemmed Graph classes with and without powers of bounded clique-width
title_sort Graph classes with and without powers of bounded clique-width
dc.creator.none.fl_str_mv Bonomo, Flavia
Grippo, Luciano Norberto
Milanič, Martin
Safe, Martin Dario
author Bonomo, Flavia
author_facet Bonomo, Flavia
Grippo, Luciano Norberto
Milanič, Martin
Safe, Martin Dario
author_role author
author2 Grippo, Luciano Norberto
Milanič, Martin
Safe, Martin Dario
author2_role author
author
author
dc.subject.none.fl_str_mv Clique-Width
Hereditary Graph Class
Power of A Graph
Power-Bounded Clique-Width
topic Clique-Width
Hereditary Graph Class
Power of A Graph
Power-Bounded Clique-Width
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We initiate the study of graph classes of power-bounded clique-width, that is, graph classes for which there exist integers k and ℓ such that the kth powers of the graphs are of clique-width at most ℓ. We give sufficient and necessary conditions for this property. As our main results, we characterize graph classes of power-bounded clique-width within classes defined by either one forbidden induced subgraph, or by two connected forbidden induced subgraphs. We also show that for every positive integer k, there exists a graph class such that the kth powers of graphs in the class form a class of bounded clique-width, while this is not the case for any smaller power.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Grippo, Luciano Norberto. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Milanič, Martin. University Of Primorska; Eslovenia
Fil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; Argentina
description We initiate the study of graph classes of power-bounded clique-width, that is, graph classes for which there exist integers k and ℓ such that the kth powers of the graphs are of clique-width at most ℓ. We give sufficient and necessary conditions for this property. As our main results, we characterize graph classes of power-bounded clique-width within classes defined by either one forbidden induced subgraph, or by two connected forbidden induced subgraphs. We also show that for every positive integer k, there exists a graph class such that the kth powers of graphs in the class form a class of bounded clique-width, while this is not the case for any smaller power.
publishDate 2016
dc.date.none.fl_str_mv 2016-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55546
Bonomo, Flavia; Grippo, Luciano Norberto; Milanič, Martin; Safe, Martin Dario; Graph classes with and without powers of bounded clique-width; Elsevier Science; Discrete Applied Mathematics; 199; 1-2016; 3-15
0166-218X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55546
identifier_str_mv Bonomo, Flavia; Grippo, Luciano Norberto; Milanič, Martin; Safe, Martin Dario; Graph classes with and without powers of bounded clique-width; Elsevier Science; Discrete Applied Mathematics; 199; 1-2016; 3-15
0166-218X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2015.06.010
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X15002966
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268599645896704
score 13.13397