Graph classes with and without powers of bounded clique-width
- Autores
- Bonomo, Flavia; Grippo, Luciano Norberto; Milanič, Martin; Safe, Martin Dario
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We initiate the study of graph classes of power-bounded clique-width, that is, graph classes for which there exist integers k and ℓ such that the kth powers of the graphs are of clique-width at most ℓ. We give sufficient and necessary conditions for this property. As our main results, we characterize graph classes of power-bounded clique-width within classes defined by either one forbidden induced subgraph, or by two connected forbidden induced subgraphs. We also show that for every positive integer k, there exists a graph class such that the kth powers of graphs in the class form a class of bounded clique-width, while this is not the case for any smaller power.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Grippo, Luciano Norberto. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Milanič, Martin. University Of Primorska; Eslovenia
Fil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; Argentina - Materia
-
Clique-Width
Hereditary Graph Class
Power of A Graph
Power-Bounded Clique-Width - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55546
Ver los metadatos del registro completo
id |
CONICETDig_a05865ea304c68f57c9cdd4b937c94ca |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55546 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Graph classes with and without powers of bounded clique-widthBonomo, FlaviaGrippo, Luciano NorbertoMilanič, MartinSafe, Martin DarioClique-WidthHereditary Graph ClassPower of A GraphPower-Bounded Clique-Widthhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We initiate the study of graph classes of power-bounded clique-width, that is, graph classes for which there exist integers k and ℓ such that the kth powers of the graphs are of clique-width at most ℓ. We give sufficient and necessary conditions for this property. As our main results, we characterize graph classes of power-bounded clique-width within classes defined by either one forbidden induced subgraph, or by two connected forbidden induced subgraphs. We also show that for every positive integer k, there exists a graph class such that the kth powers of graphs in the class form a class of bounded clique-width, while this is not the case for any smaller power.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Grippo, Luciano Norberto. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Milanič, Martin. University Of Primorska; EsloveniaFil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; ArgentinaElsevier Science2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55546Bonomo, Flavia; Grippo, Luciano Norberto; Milanič, Martin; Safe, Martin Dario; Graph classes with and without powers of bounded clique-width; Elsevier Science; Discrete Applied Mathematics; 199; 1-2016; 3-150166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2015.06.010info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X15002966info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:24Zoai:ri.conicet.gov.ar:11336/55546instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:24.485CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Graph classes with and without powers of bounded clique-width |
title |
Graph classes with and without powers of bounded clique-width |
spellingShingle |
Graph classes with and without powers of bounded clique-width Bonomo, Flavia Clique-Width Hereditary Graph Class Power of A Graph Power-Bounded Clique-Width |
title_short |
Graph classes with and without powers of bounded clique-width |
title_full |
Graph classes with and without powers of bounded clique-width |
title_fullStr |
Graph classes with and without powers of bounded clique-width |
title_full_unstemmed |
Graph classes with and without powers of bounded clique-width |
title_sort |
Graph classes with and without powers of bounded clique-width |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Grippo, Luciano Norberto Milanič, Martin Safe, Martin Dario |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Grippo, Luciano Norberto Milanič, Martin Safe, Martin Dario |
author_role |
author |
author2 |
Grippo, Luciano Norberto Milanič, Martin Safe, Martin Dario |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Clique-Width Hereditary Graph Class Power of A Graph Power-Bounded Clique-Width |
topic |
Clique-Width Hereditary Graph Class Power of A Graph Power-Bounded Clique-Width |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We initiate the study of graph classes of power-bounded clique-width, that is, graph classes for which there exist integers k and ℓ such that the kth powers of the graphs are of clique-width at most ℓ. We give sufficient and necessary conditions for this property. As our main results, we characterize graph classes of power-bounded clique-width within classes defined by either one forbidden induced subgraph, or by two connected forbidden induced subgraphs. We also show that for every positive integer k, there exists a graph class such that the kth powers of graphs in the class form a class of bounded clique-width, while this is not the case for any smaller power. Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Grippo, Luciano Norberto. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Milanič, Martin. University Of Primorska; Eslovenia Fil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; Argentina |
description |
We initiate the study of graph classes of power-bounded clique-width, that is, graph classes for which there exist integers k and ℓ such that the kth powers of the graphs are of clique-width at most ℓ. We give sufficient and necessary conditions for this property. As our main results, we characterize graph classes of power-bounded clique-width within classes defined by either one forbidden induced subgraph, or by two connected forbidden induced subgraphs. We also show that for every positive integer k, there exists a graph class such that the kth powers of graphs in the class form a class of bounded clique-width, while this is not the case for any smaller power. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55546 Bonomo, Flavia; Grippo, Luciano Norberto; Milanič, Martin; Safe, Martin Dario; Graph classes with and without powers of bounded clique-width; Elsevier Science; Discrete Applied Mathematics; 199; 1-2016; 3-15 0166-218X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55546 |
identifier_str_mv |
Bonomo, Flavia; Grippo, Luciano Norberto; Milanič, Martin; Safe, Martin Dario; Graph classes with and without powers of bounded clique-width; Elsevier Science; Discrete Applied Mathematics; 199; 1-2016; 3-15 0166-218X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2015.06.010 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X15002966 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268599645896704 |
score |
13.13397 |