Characterization of classical graph classes by weighted clique graphs

Autores
Bonomo, Flavia; Szwarcfiter, Jayme L.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given integers m1,…,mℓ, the weighted clique graph of G is the clique graph K(G), in which there is a weight assigned to each complete set S of size mi of K(G), for each i=1,…,ℓ. This weight equals the cardinality of the intersection of the cliques of G corresponding to S. We characterize weighted clique graphs in similar terms as Roberts and Spencer’s characterization of clique graphs. Further we characterize several classical graph classes in terms of their weighted clique graphs, providing a common framework for describing some different well-known classes of graphs, as hereditary clique-Helly graphs, split graphs, chordal graphs, interval graphs, proper interval graphs, line graphs, among others.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil
Materia
Weighted Clique Graphs
Graph Classes Structural Characterization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18738

id CONICETDig_f360b11618c077d542aca0252d5ad413
oai_identifier_str oai:ri.conicet.gov.ar:11336/18738
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Characterization of classical graph classes by weighted clique graphsBonomo, FlaviaSzwarcfiter, Jayme L.Weighted Clique GraphsGraph Classes Structural Characterizationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Given integers m1,…,mℓ, the weighted clique graph of G is the clique graph K(G), in which there is a weight assigned to each complete set S of size mi of K(G), for each i=1,…,ℓ. This weight equals the cardinality of the intersection of the cliques of G corresponding to S. We characterize weighted clique graphs in similar terms as Roberts and Spencer’s characterization of clique graphs. Further we characterize several classical graph classes in terms of their weighted clique graphs, providing a common framework for describing some different well-known classes of graphs, as hereditary clique-Helly graphs, split graphs, chordal graphs, interval graphs, proper interval graphs, line graphs, among others.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; BrasilElsevier Science2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18738Bonomo, Flavia; Szwarcfiter, Jayme L.; Characterization of classical graph classes by weighted clique graphs; Elsevier Science; Discrete Applied Mathematics; 165; 3-2014; 83-950166-218XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2013.04.013info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0166218X1300200Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:36:20Zoai:ri.conicet.gov.ar:11336/18738instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:36:21.063CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Characterization of classical graph classes by weighted clique graphs
title Characterization of classical graph classes by weighted clique graphs
spellingShingle Characterization of classical graph classes by weighted clique graphs
Bonomo, Flavia
Weighted Clique Graphs
Graph Classes Structural Characterization
title_short Characterization of classical graph classes by weighted clique graphs
title_full Characterization of classical graph classes by weighted clique graphs
title_fullStr Characterization of classical graph classes by weighted clique graphs
title_full_unstemmed Characterization of classical graph classes by weighted clique graphs
title_sort Characterization of classical graph classes by weighted clique graphs
dc.creator.none.fl_str_mv Bonomo, Flavia
Szwarcfiter, Jayme L.
author Bonomo, Flavia
author_facet Bonomo, Flavia
Szwarcfiter, Jayme L.
author_role author
author2 Szwarcfiter, Jayme L.
author2_role author
dc.subject.none.fl_str_mv Weighted Clique Graphs
Graph Classes Structural Characterization
topic Weighted Clique Graphs
Graph Classes Structural Characterization
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given integers m1,…,mℓ, the weighted clique graph of G is the clique graph K(G), in which there is a weight assigned to each complete set S of size mi of K(G), for each i=1,…,ℓ. This weight equals the cardinality of the intersection of the cliques of G corresponding to S. We characterize weighted clique graphs in similar terms as Roberts and Spencer’s characterization of clique graphs. Further we characterize several classical graph classes in terms of their weighted clique graphs, providing a common framework for describing some different well-known classes of graphs, as hereditary clique-Helly graphs, split graphs, chordal graphs, interval graphs, proper interval graphs, line graphs, among others.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Szwarcfiter, Jayme L.. Universidade Federal do Rio de Janeiro; Brasil
description Given integers m1,…,mℓ, the weighted clique graph of G is the clique graph K(G), in which there is a weight assigned to each complete set S of size mi of K(G), for each i=1,…,ℓ. This weight equals the cardinality of the intersection of the cliques of G corresponding to S. We characterize weighted clique graphs in similar terms as Roberts and Spencer’s characterization of clique graphs. Further we characterize several classical graph classes in terms of their weighted clique graphs, providing a common framework for describing some different well-known classes of graphs, as hereditary clique-Helly graphs, split graphs, chordal graphs, interval graphs, proper interval graphs, line graphs, among others.
publishDate 2014
dc.date.none.fl_str_mv 2014-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18738
Bonomo, Flavia; Szwarcfiter, Jayme L.; Characterization of classical graph classes by weighted clique graphs; Elsevier Science; Discrete Applied Mathematics; 165; 3-2014; 83-95
0166-218X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18738
identifier_str_mv Bonomo, Flavia; Szwarcfiter, Jayme L.; Characterization of classical graph classes by weighted clique graphs; Elsevier Science; Discrete Applied Mathematics; 165; 3-2014; 83-95
0166-218X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2013.04.013
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0166218X1300200X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083486858870784
score 13.22299