Higher order selfdual toric varieties
- Autores
- Dickenstein, Alicia Marcela; Piene, Ragni
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The notion of higher order dual varieties of a projective variety, introduced in Piene [Singularities, part 2, (Arcata, Calif., 1981), Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, 1983], is a natural generalization of the classical notion of projective duality. In this paper, we present geometric and combinatorial characterizations of those equivariant projective toric embeddings that satisfy higher order selfduality. We also give several examples and general constructions. In particular, we highlight the relation with Cayley–Bacharach questions and with Cayley configurations.
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Piene, Ragni. University of Oslo; Noruega - Materia
-
higher order dual
toric variety
selfduality - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55563
Ver los metadatos del registro completo
id |
CONICETDig_d7b52f8ebd0d74ff92a22e965f6ed43d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55563 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Higher order selfdual toric varietiesDickenstein, Alicia MarcelaPiene, Ragnihigher order dualtoric varietyselfdualityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The notion of higher order dual varieties of a projective variety, introduced in Piene [Singularities, part 2, (Arcata, Calif., 1981), Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, 1983], is a natural generalization of the classical notion of projective duality. In this paper, we present geometric and combinatorial characterizations of those equivariant projective toric embeddings that satisfy higher order selfduality. We also give several examples and general constructions. In particular, we highlight the relation with Cayley–Bacharach questions and with Cayley configurations.Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Piene, Ragni. University of Oslo; NoruegaSpringer Heidelberg2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55563Dickenstein, Alicia Marcela; Piene, Ragni; Higher order selfdual toric varieties; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 196; 5; 10-2017; 1759-17770373-3114CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10231-017-0637-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-017-0637-4info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1609.05189info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:43Zoai:ri.conicet.gov.ar:11336/55563instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:43.947CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Higher order selfdual toric varieties |
title |
Higher order selfdual toric varieties |
spellingShingle |
Higher order selfdual toric varieties Dickenstein, Alicia Marcela higher order dual toric variety selfduality |
title_short |
Higher order selfdual toric varieties |
title_full |
Higher order selfdual toric varieties |
title_fullStr |
Higher order selfdual toric varieties |
title_full_unstemmed |
Higher order selfdual toric varieties |
title_sort |
Higher order selfdual toric varieties |
dc.creator.none.fl_str_mv |
Dickenstein, Alicia Marcela Piene, Ragni |
author |
Dickenstein, Alicia Marcela |
author_facet |
Dickenstein, Alicia Marcela Piene, Ragni |
author_role |
author |
author2 |
Piene, Ragni |
author2_role |
author |
dc.subject.none.fl_str_mv |
higher order dual toric variety selfduality |
topic |
higher order dual toric variety selfduality |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The notion of higher order dual varieties of a projective variety, introduced in Piene [Singularities, part 2, (Arcata, Calif., 1981), Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, 1983], is a natural generalization of the classical notion of projective duality. In this paper, we present geometric and combinatorial characterizations of those equivariant projective toric embeddings that satisfy higher order selfduality. We also give several examples and general constructions. In particular, we highlight the relation with Cayley–Bacharach questions and with Cayley configurations. Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Piene, Ragni. University of Oslo; Noruega |
description |
The notion of higher order dual varieties of a projective variety, introduced in Piene [Singularities, part 2, (Arcata, Calif., 1981), Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, 1983], is a natural generalization of the classical notion of projective duality. In this paper, we present geometric and combinatorial characterizations of those equivariant projective toric embeddings that satisfy higher order selfduality. We also give several examples and general constructions. In particular, we highlight the relation with Cayley–Bacharach questions and with Cayley configurations. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55563 Dickenstein, Alicia Marcela; Piene, Ragni; Higher order selfdual toric varieties; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 196; 5; 10-2017; 1759-1777 0373-3114 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55563 |
identifier_str_mv |
Dickenstein, Alicia Marcela; Piene, Ragni; Higher order selfdual toric varieties; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 196; 5; 10-2017; 1759-1777 0373-3114 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10231-017-0637-4 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-017-0637-4 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1609.05189 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Heidelberg |
publisher.none.fl_str_mv |
Springer Heidelberg |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269655562977280 |
score |
13.13397 |