A Simple Combinatorial Criterion for Projective Toric Manifolds with Dual Defect
- Autores
- Dickenstein, Alicia Marcela; Nill, Benjamin
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that any smooth lattice polytope P with codegree greater or equal than (dim(P) + 3)/2 (or equivalently, with degree smaller than dim(P)/2), defines a dual defective projective toric manifold. This implies that P is Q-normal (in the terminology of [11]) and answers partially an adjunction-theoretic conjecture by BeltramettiSommese (see [5],[4],[11]). Also, it follows from [24] that smooth lattice polytopes with this property are precisely strict Cayley polytopes, which completes the answer in [11] of a question in [1] for smooth polytopes.
Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Nill, Benjamin. University of Georgia; Estados Unidos - Materia
-
Toric Manifold
Lattice Polytope
Dual Defect
Hypergeometric Equalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15031
Ver los metadatos del registro completo
id |
CONICETDig_4c77d495db16553de43b3f9d5cb08399 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15031 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Simple Combinatorial Criterion for Projective Toric Manifolds with Dual DefectDickenstein, Alicia MarcelaNill, BenjaminToric ManifoldLattice PolytopeDual DefectHypergeometric Equalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that any smooth lattice polytope P with codegree greater or equal than (dim(P) + 3)/2 (or equivalently, with degree smaller than dim(P)/2), defines a dual defective projective toric manifold. This implies that P is Q-normal (in the terminology of [11]) and answers partially an adjunction-theoretic conjecture by BeltramettiSommese (see [5],[4],[11]). Also, it follows from [24] that smooth lattice polytopes with this property are precisely strict Cayley polytopes, which completes the answer in [11] of a question in [1] for smooth polytopes.Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Nill, Benjamin. University of Georgia; Estados UnidosInternational Press Boston2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15031Dickenstein, Alicia Marcela; Nill, Benjamin; A Simple Combinatorial Criterion for Projective Toric Manifolds with Dual Defect; International Press Boston; Mathematical Research Letters; 17; 3; 3-2010; 435-4481073-2780enginfo:eu-repo/semantics/altIdentifier/url/http://intlpress.com/site/pub/files/_fulltext/journals/mrl/2010/0017/0003/MRL-2010-0017-0003-a005.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:34Zoai:ri.conicet.gov.ar:11336/15031instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:34.894CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Simple Combinatorial Criterion for Projective Toric Manifolds with Dual Defect |
title |
A Simple Combinatorial Criterion for Projective Toric Manifolds with Dual Defect |
spellingShingle |
A Simple Combinatorial Criterion for Projective Toric Manifolds with Dual Defect Dickenstein, Alicia Marcela Toric Manifold Lattice Polytope Dual Defect Hypergeometric Equalities |
title_short |
A Simple Combinatorial Criterion for Projective Toric Manifolds with Dual Defect |
title_full |
A Simple Combinatorial Criterion for Projective Toric Manifolds with Dual Defect |
title_fullStr |
A Simple Combinatorial Criterion for Projective Toric Manifolds with Dual Defect |
title_full_unstemmed |
A Simple Combinatorial Criterion for Projective Toric Manifolds with Dual Defect |
title_sort |
A Simple Combinatorial Criterion for Projective Toric Manifolds with Dual Defect |
dc.creator.none.fl_str_mv |
Dickenstein, Alicia Marcela Nill, Benjamin |
author |
Dickenstein, Alicia Marcela |
author_facet |
Dickenstein, Alicia Marcela Nill, Benjamin |
author_role |
author |
author2 |
Nill, Benjamin |
author2_role |
author |
dc.subject.none.fl_str_mv |
Toric Manifold Lattice Polytope Dual Defect Hypergeometric Equalities |
topic |
Toric Manifold Lattice Polytope Dual Defect Hypergeometric Equalities |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show that any smooth lattice polytope P with codegree greater or equal than (dim(P) + 3)/2 (or equivalently, with degree smaller than dim(P)/2), defines a dual defective projective toric manifold. This implies that P is Q-normal (in the terminology of [11]) and answers partially an adjunction-theoretic conjecture by BeltramettiSommese (see [5],[4],[11]). Also, it follows from [24] that smooth lattice polytopes with this property are precisely strict Cayley polytopes, which completes the answer in [11] of a question in [1] for smooth polytopes. Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Nill, Benjamin. University of Georgia; Estados Unidos |
description |
We show that any smooth lattice polytope P with codegree greater or equal than (dim(P) + 3)/2 (or equivalently, with degree smaller than dim(P)/2), defines a dual defective projective toric manifold. This implies that P is Q-normal (in the terminology of [11]) and answers partially an adjunction-theoretic conjecture by BeltramettiSommese (see [5],[4],[11]). Also, it follows from [24] that smooth lattice polytopes with this property are precisely strict Cayley polytopes, which completes the answer in [11] of a question in [1] for smooth polytopes. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15031 Dickenstein, Alicia Marcela; Nill, Benjamin; A Simple Combinatorial Criterion for Projective Toric Manifolds with Dual Defect; International Press Boston; Mathematical Research Letters; 17; 3; 3-2010; 435-448 1073-2780 |
url |
http://hdl.handle.net/11336/15031 |
identifier_str_mv |
Dickenstein, Alicia Marcela; Nill, Benjamin; A Simple Combinatorial Criterion for Projective Toric Manifolds with Dual Defect; International Press Boston; Mathematical Research Letters; 17; 3; 3-2010; 435-448 1073-2780 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://intlpress.com/site/pub/files/_fulltext/journals/mrl/2010/0017/0003/MRL-2010-0017-0003-a005.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
International Press Boston |
publisher.none.fl_str_mv |
International Press Boston |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614396170469376 |
score |
13.070432 |