Classifying smooth lattice polytopes via toric fibrations

Autores
Dickenstein, A.; Di Rocco, S.; Piene, R.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2 d + 1. This gives a sharp answer, for this class of polytopes, to a question raised by V.V. Batyrev and B. Nill. © 2009 Elsevier Inc. All rights reserved.
Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Adv. Math. 2009;222(1):240-254
Materia
Cayley polytope
Lattice polytope
Nef value
Toric fibration
Toric variety
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00018708_v222_n1_p240_Dickenstein

id BDUBAFCEN_c460e8aed74b05b91630515f59669ad0
oai_identifier_str paperaa:paper_00018708_v222_n1_p240_Dickenstein
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Classifying smooth lattice polytopes via toric fibrationsDickenstein, A.Di Rocco, S.Piene, R.Cayley polytopeLattice polytopeNef valueToric fibrationToric varietyWe show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2 d + 1. This gives a sharp answer, for this class of polytopes, to a question raised by V.V. Batyrev and B. Nill. © 2009 Elsevier Inc. All rights reserved.Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00018708_v222_n1_p240_DickensteinAdv. Math. 2009;222(1):240-254reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:09Zpaperaa:paper_00018708_v222_n1_p240_DickensteinInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:10.425Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Classifying smooth lattice polytopes via toric fibrations
title Classifying smooth lattice polytopes via toric fibrations
spellingShingle Classifying smooth lattice polytopes via toric fibrations
Dickenstein, A.
Cayley polytope
Lattice polytope
Nef value
Toric fibration
Toric variety
title_short Classifying smooth lattice polytopes via toric fibrations
title_full Classifying smooth lattice polytopes via toric fibrations
title_fullStr Classifying smooth lattice polytopes via toric fibrations
title_full_unstemmed Classifying smooth lattice polytopes via toric fibrations
title_sort Classifying smooth lattice polytopes via toric fibrations
dc.creator.none.fl_str_mv Dickenstein, A.
Di Rocco, S.
Piene, R.
author Dickenstein, A.
author_facet Dickenstein, A.
Di Rocco, S.
Piene, R.
author_role author
author2 Di Rocco, S.
Piene, R.
author2_role author
author
dc.subject.none.fl_str_mv Cayley polytope
Lattice polytope
Nef value
Toric fibration
Toric variety
topic Cayley polytope
Lattice polytope
Nef value
Toric fibration
Toric variety
dc.description.none.fl_txt_mv We show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2 d + 1. This gives a sharp answer, for this class of polytopes, to a question raised by V.V. Batyrev and B. Nill. © 2009 Elsevier Inc. All rights reserved.
Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We show that any smooth Q-normal lattice polytope P of dimension n and degree d is a strict Cayley polytope if n ≥ 2 d + 1. This gives a sharp answer, for this class of polytopes, to a question raised by V.V. Batyrev and B. Nill. © 2009 Elsevier Inc. All rights reserved.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00018708_v222_n1_p240_Dickenstein
url http://hdl.handle.net/20.500.12110/paper_00018708_v222_n1_p240_Dickenstein
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Adv. Math. 2009;222(1):240-254
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618740271939584
score 13.069144