Codimension theorems for complete toric varieties

Autores
Cox, D.; Dickenstein, A.
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Society.
Fil:Cox, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Proc. Am. Math. Soc. 2005;133(11):3153-3162
Materia
Toric variety
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_00029939_v133_n11_p3153_Cox

id BDUBAFCEN_d0c8a8ce4346880bba987d74d4737c9f
oai_identifier_str paperaa:paper_00029939_v133_n11_p3153_Cox
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Codimension theorems for complete toric varietiesCox, D.Dickenstein, A.Toric varietyLet X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Society.Fil:Cox, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00029939_v133_n11_p3153_CoxProc. Am. Math. Soc. 2005;133(11):3153-3162reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:37Zpaperaa:paper_00029939_v133_n11_p3153_CoxInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:38.918Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Codimension theorems for complete toric varieties
title Codimension theorems for complete toric varieties
spellingShingle Codimension theorems for complete toric varieties
Cox, D.
Toric variety
title_short Codimension theorems for complete toric varieties
title_full Codimension theorems for complete toric varieties
title_fullStr Codimension theorems for complete toric varieties
title_full_unstemmed Codimension theorems for complete toric varieties
title_sort Codimension theorems for complete toric varieties
dc.creator.none.fl_str_mv Cox, D.
Dickenstein, A.
author Cox, D.
author_facet Cox, D.
Dickenstein, A.
author_role author
author2 Dickenstein, A.
author2_role author
dc.subject.none.fl_str_mv Toric variety
topic Toric variety
dc.description.none.fl_txt_mv Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Society.
Fil:Cox, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Society.
publishDate 2005
dc.date.none.fl_str_mv 2005
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_00029939_v133_n11_p3153_Cox
url http://hdl.handle.net/20.500.12110/paper_00029939_v133_n11_p3153_Cox
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Proc. Am. Math. Soc. 2005;133(11):3153-3162
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340704864436224
score 12.623145