Codimension theorems for complete toric varieties
- Autores
- Cox, D.; Dickenstein, A.
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Society.
Fil:Cox, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Proc. Am. Math. Soc. 2005;133(11):3153-3162
- Materia
- Toric variety
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00029939_v133_n11_p3153_Cox
Ver los metadatos del registro completo
id |
BDUBAFCEN_d0c8a8ce4346880bba987d74d4737c9f |
---|---|
oai_identifier_str |
paperaa:paper_00029939_v133_n11_p3153_Cox |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Codimension theorems for complete toric varietiesCox, D.Dickenstein, A.Toric varietyLet X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Society.Fil:Cox, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00029939_v133_n11_p3153_CoxProc. Am. Math. Soc. 2005;133(11):3153-3162reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:37Zpaperaa:paper_00029939_v133_n11_p3153_CoxInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:38.918Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Codimension theorems for complete toric varieties |
title |
Codimension theorems for complete toric varieties |
spellingShingle |
Codimension theorems for complete toric varieties Cox, D. Toric variety |
title_short |
Codimension theorems for complete toric varieties |
title_full |
Codimension theorems for complete toric varieties |
title_fullStr |
Codimension theorems for complete toric varieties |
title_full_unstemmed |
Codimension theorems for complete toric varieties |
title_sort |
Codimension theorems for complete toric varieties |
dc.creator.none.fl_str_mv |
Cox, D. Dickenstein, A. |
author |
Cox, D. |
author_facet |
Cox, D. Dickenstein, A. |
author_role |
author |
author2 |
Dickenstein, A. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Toric variety |
topic |
Toric variety |
dc.description.none.fl_txt_mv |
Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Society. Fil:Cox, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Society. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00029939_v133_n11_p3153_Cox |
url |
http://hdl.handle.net/20.500.12110/paper_00029939_v133_n11_p3153_Cox |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Proc. Am. Math. Soc. 2005;133(11):3153-3162 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340704864436224 |
score |
12.623145 |