Self-dual toric varieties
- Autores
- Bourel, Matías; Dickenstein, Alicia Marcela; Rittatore, Alvaro
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let T be a torus over an algebraically closed field k of characteristic 0, and consider a projective T -module P ( V ). We determine when a projective toric subvariety X ⊂ P ( V ) is self-dual, in terms of the configuration of weights of V.
Fil: Bourel, Matías. Universidad de la República; Uruguay
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Rittatore, Alvaro. Universidad de la República; Uruguay - Materia
-
Toric Variety
Self-Dual
Lattice Configuration
Gale Dual - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14914
Ver los metadatos del registro completo
id |
CONICETDig_0955047162a6665e00eb1591ea099048 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14914 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Self-dual toric varietiesBourel, MatíasDickenstein, Alicia MarcelaRittatore, AlvaroToric VarietySelf-DualLattice ConfigurationGale Dualhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let T be a torus over an algebraically closed field k of characteristic 0, and consider a projective T -module P ( V ). We determine when a projective toric subvariety X ⊂ P ( V ) is self-dual, in terms of the configuration of weights of V.Fil: Bourel, Matías. Universidad de la República; UruguayFil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Rittatore, Alvaro. Universidad de la República; UruguayOxford University Press2011-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14914Bourel, Matías; Dickenstein, Alicia Marcela; Rittatore, Alvaro; Self-dual toric varieties; Oxford University Press; Journal Of The London Mathematical Society-second Series; 84; 2; 12-2011; 514-5400024-6107enginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/jlms/jdr022/fullinfo:eu-repo/semantics/altIdentifier/doi/10.1112/jlms/jdr022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:44Zoai:ri.conicet.gov.ar:11336/14914instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:45.006CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Self-dual toric varieties |
title |
Self-dual toric varieties |
spellingShingle |
Self-dual toric varieties Bourel, Matías Toric Variety Self-Dual Lattice Configuration Gale Dual |
title_short |
Self-dual toric varieties |
title_full |
Self-dual toric varieties |
title_fullStr |
Self-dual toric varieties |
title_full_unstemmed |
Self-dual toric varieties |
title_sort |
Self-dual toric varieties |
dc.creator.none.fl_str_mv |
Bourel, Matías Dickenstein, Alicia Marcela Rittatore, Alvaro |
author |
Bourel, Matías |
author_facet |
Bourel, Matías Dickenstein, Alicia Marcela Rittatore, Alvaro |
author_role |
author |
author2 |
Dickenstein, Alicia Marcela Rittatore, Alvaro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Toric Variety Self-Dual Lattice Configuration Gale Dual |
topic |
Toric Variety Self-Dual Lattice Configuration Gale Dual |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let T be a torus over an algebraically closed field k of characteristic 0, and consider a projective T -module P ( V ). We determine when a projective toric subvariety X ⊂ P ( V ) is self-dual, in terms of the configuration of weights of V. Fil: Bourel, Matías. Universidad de la República; Uruguay Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Rittatore, Alvaro. Universidad de la República; Uruguay |
description |
Let T be a torus over an algebraically closed field k of characteristic 0, and consider a projective T -module P ( V ). We determine when a projective toric subvariety X ⊂ P ( V ) is self-dual, in terms of the configuration of weights of V. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14914 Bourel, Matías; Dickenstein, Alicia Marcela; Rittatore, Alvaro; Self-dual toric varieties; Oxford University Press; Journal Of The London Mathematical Society-second Series; 84; 2; 12-2011; 514-540 0024-6107 |
url |
http://hdl.handle.net/11336/14914 |
identifier_str_mv |
Bourel, Matías; Dickenstein, Alicia Marcela; Rittatore, Alvaro; Self-dual toric varieties; Oxford University Press; Journal Of The London Mathematical Society-second Series; 84; 2; 12-2011; 514-540 0024-6107 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/jlms/jdr022/full info:eu-repo/semantics/altIdentifier/doi/10.1112/jlms/jdr022 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270093195608064 |
score |
13.13397 |