Weighted estimates for integral operators on local BMO type spaces

Autores
Ferreyra, Élida Vilma; Flores, Guillermo Javier
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Ferreyra, Élida Vilma. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: Ferreyra, Élida Vilma. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Ferreyra, Élida Vilma. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Flores, Guillermo Javier. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: Flores, Guillermo Javier. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Flores, Guillermo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
We prove the weighted boundedness for a family of integral operators Tα on Lebesgue spaces and local BMO type spaces. To this end we show that Tα can be controlled by the Calder ́on operator and a local maximal operator. This approach allows us to characterize the power weighted boundedness on Lebesgue spaces.
publishedVersion
Fil: Ferreyra, Élida Vilma. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: Ferreyra, Élida Vilma. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Ferreyra, Élida Vilma. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Flores, Guillermo Javier. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: Flores, Guillermo Javier. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Flores, Guillermo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Matemática Pura
Fuente
ISSN: 0025-584X
Materia
BMO spaces
Weighted inequalities
Integral operators
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Repositorio
Repositorio Digital Universitario (UNC)
Institución
Universidad Nacional de Córdoba
OAI Identificador
oai:rdu.unc.edu.ar:11086/27818

id RDUUNC_8470d271ad3a40c514030d83ce8fa3e9
oai_identifier_str oai:rdu.unc.edu.ar:11086/27818
network_acronym_str RDUUNC
repository_id_str 2572
network_name_str Repositorio Digital Universitario (UNC)
spelling Weighted estimates for integral operators on local BMO type spacesFerreyra, Élida VilmaFlores, Guillermo JavierBMO spacesWeighted inequalitiesIntegral operatorsFil: Ferreyra, Élida Vilma. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Ferreyra, Élida Vilma. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Ferreyra, Élida Vilma. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Flores, Guillermo Javier. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Flores, Guillermo Javier. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Flores, Guillermo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.We prove the weighted boundedness for a family of integral operators Tα on Lebesgue spaces and local BMO type spaces. To this end we show that Tα can be controlled by the Calder ́on operator and a local maximal operator. This approach allows us to characterize the power weighted boundedness on Lebesgue spaces.publishedVersionFil: Ferreyra, Élida Vilma. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Ferreyra, Élida Vilma. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Ferreyra, Élida Vilma. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Flores, Guillermo Javier. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Flores, Guillermo Javier. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Flores, Guillermo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.Matemática Pura2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/11086/27818https://doi.org/10.1002/mana.201400121https://doi.org/10.1002/mana.201400121ISSN: 0025-584Xreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNCenginfo:eu-repo/semantics/openAccess2025-09-04T12:33:56Zoai:rdu.unc.edu.ar:11086/27818Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-04 12:33:56.78Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse
dc.title.none.fl_str_mv Weighted estimates for integral operators on local BMO type spaces
title Weighted estimates for integral operators on local BMO type spaces
spellingShingle Weighted estimates for integral operators on local BMO type spaces
Ferreyra, Élida Vilma
BMO spaces
Weighted inequalities
Integral operators
title_short Weighted estimates for integral operators on local BMO type spaces
title_full Weighted estimates for integral operators on local BMO type spaces
title_fullStr Weighted estimates for integral operators on local BMO type spaces
title_full_unstemmed Weighted estimates for integral operators on local BMO type spaces
title_sort Weighted estimates for integral operators on local BMO type spaces
dc.creator.none.fl_str_mv Ferreyra, Élida Vilma
Flores, Guillermo Javier
author Ferreyra, Élida Vilma
author_facet Ferreyra, Élida Vilma
Flores, Guillermo Javier
author_role author
author2 Flores, Guillermo Javier
author2_role author
dc.subject.none.fl_str_mv BMO spaces
Weighted inequalities
Integral operators
topic BMO spaces
Weighted inequalities
Integral operators
dc.description.none.fl_txt_mv Fil: Ferreyra, Élida Vilma. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: Ferreyra, Élida Vilma. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Ferreyra, Élida Vilma. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Flores, Guillermo Javier. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: Flores, Guillermo Javier. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Flores, Guillermo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
We prove the weighted boundedness for a family of integral operators Tα on Lebesgue spaces and local BMO type spaces. To this end we show that Tα can be controlled by the Calder ́on operator and a local maximal operator. This approach allows us to characterize the power weighted boundedness on Lebesgue spaces.
publishedVersion
Fil: Ferreyra, Élida Vilma. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: Ferreyra, Élida Vilma. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Ferreyra, Élida Vilma. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Flores, Guillermo Javier. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: Flores, Guillermo Javier. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Flores, Guillermo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Matemática Pura
description Fil: Ferreyra, Élida Vilma. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11086/27818
https://doi.org/10.1002/mana.201400121
https://doi.org/10.1002/mana.201400121
url http://hdl.handle.net/11086/27818
https://doi.org/10.1002/mana.201400121
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv ISSN: 0025-584X
reponame:Repositorio Digital Universitario (UNC)
instname:Universidad Nacional de Córdoba
instacron:UNC
reponame_str Repositorio Digital Universitario (UNC)
collection Repositorio Digital Universitario (UNC)
instname_str Universidad Nacional de Córdoba
instacron_str UNC
institution UNC
repository.name.fl_str_mv Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba
repository.mail.fl_str_mv oca.unc@gmail.com
_version_ 1842349670085427200
score 13.13397