Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators
- Autores
- Berra, Fabio Martín; Carena, Marilina; Pradolini, Gladis Guadalupe
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study mixed weak type inequalities for the commutator [b,T], where b is a BMO function and T is a Calderón-Zygmund operator. Our technique involves the classical Calderón–Zygmund decomposition, which allows us to give a direct proof without taking into account the associated maximal operator. We use this result to prove an analogous inequality for higher-order commutators. For a given Young function φ we also consider singular integral operators T whose kernels satisfy a Lφ-Hörmander property, and we find sufficient conditions on φ such that a mixed weak estimate holds for T and also for its higher order commutators T m b . We also obtain a mixed estimation for a wide class of maximal operators associated to certain Young functions of LlogL type which are in intimate relation with the commutators. This last estimate involves an arbitrary weight u and a radial function v which is not even locally integrable.
Fil: Berra, Fabio Martín. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carena, Marilina. Universidad Nacional del Litoral. Facultad de Humanidades y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
MUCKENHOUPT WEIGHTS
BMO
COMMUTATORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/167892
Ver los metadatos del registro completo
id |
CONICETDig_4cc5ddf16de2d9c99ce2e3870579b007 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/167892 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operatorsBerra, Fabio MartínCarena, MarilinaPradolini, Gladis GuadalupeMUCKENHOUPT WEIGHTSBMOCOMMUTATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study mixed weak type inequalities for the commutator [b,T], where b is a BMO function and T is a Calderón-Zygmund operator. Our technique involves the classical Calderón–Zygmund decomposition, which allows us to give a direct proof without taking into account the associated maximal operator. We use this result to prove an analogous inequality for higher-order commutators. For a given Young function φ we also consider singular integral operators T whose kernels satisfy a Lφ-Hörmander property, and we find sufficient conditions on φ such that a mixed weak estimate holds for T and also for its higher order commutators T m b . We also obtain a mixed estimation for a wide class of maximal operators associated to certain Young functions of LlogL type which are in intimate relation with the commutators. This last estimate involves an arbitrary weight u and a radial function v which is not even locally integrable.Fil: Berra, Fabio Martín. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carena, Marilina. Universidad Nacional del Litoral. Facultad de Humanidades y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMichigan Mathematical Journal2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167892Berra, Fabio Martín; Carena, Marilina; Pradolini, Gladis Guadalupe; Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators; Michigan Mathematical Journal; Michigan Mathematical Journal; 68; 9-2019; 527-5640026-2285CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1704.04953info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.1704.04953info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:19:39Zoai:ri.conicet.gov.ar:11336/167892instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:19:40.071CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators |
title |
Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators |
spellingShingle |
Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators Berra, Fabio Martín MUCKENHOUPT WEIGHTS BMO COMMUTATORS |
title_short |
Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators |
title_full |
Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators |
title_fullStr |
Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators |
title_full_unstemmed |
Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators |
title_sort |
Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators |
dc.creator.none.fl_str_mv |
Berra, Fabio Martín Carena, Marilina Pradolini, Gladis Guadalupe |
author |
Berra, Fabio Martín |
author_facet |
Berra, Fabio Martín Carena, Marilina Pradolini, Gladis Guadalupe |
author_role |
author |
author2 |
Carena, Marilina Pradolini, Gladis Guadalupe |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MUCKENHOUPT WEIGHTS BMO COMMUTATORS |
topic |
MUCKENHOUPT WEIGHTS BMO COMMUTATORS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study mixed weak type inequalities for the commutator [b,T], where b is a BMO function and T is a Calderón-Zygmund operator. Our technique involves the classical Calderón–Zygmund decomposition, which allows us to give a direct proof without taking into account the associated maximal operator. We use this result to prove an analogous inequality for higher-order commutators. For a given Young function φ we also consider singular integral operators T whose kernels satisfy a Lφ-Hörmander property, and we find sufficient conditions on φ such that a mixed weak estimate holds for T and also for its higher order commutators T m b . We also obtain a mixed estimation for a wide class of maximal operators associated to certain Young functions of LlogL type which are in intimate relation with the commutators. This last estimate involves an arbitrary weight u and a radial function v which is not even locally integrable. Fil: Berra, Fabio Martín. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Carena, Marilina. Universidad Nacional del Litoral. Facultad de Humanidades y Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pradolini, Gladis Guadalupe. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We study mixed weak type inequalities for the commutator [b,T], where b is a BMO function and T is a Calderón-Zygmund operator. Our technique involves the classical Calderón–Zygmund decomposition, which allows us to give a direct proof without taking into account the associated maximal operator. We use this result to prove an analogous inequality for higher-order commutators. For a given Young function φ we also consider singular integral operators T whose kernels satisfy a Lφ-Hörmander property, and we find sufficient conditions on φ such that a mixed weak estimate holds for T and also for its higher order commutators T m b . We also obtain a mixed estimation for a wide class of maximal operators associated to certain Young functions of LlogL type which are in intimate relation with the commutators. This last estimate involves an arbitrary weight u and a radial function v which is not even locally integrable. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/167892 Berra, Fabio Martín; Carena, Marilina; Pradolini, Gladis Guadalupe; Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators; Michigan Mathematical Journal; Michigan Mathematical Journal; 68; 9-2019; 527-564 0026-2285 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/167892 |
identifier_str_mv |
Berra, Fabio Martín; Carena, Marilina; Pradolini, Gladis Guadalupe; Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators; Michigan Mathematical Journal; Michigan Mathematical Journal; 68; 9-2019; 527-564 0026-2285 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1704.04953 info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.1704.04953 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Michigan Mathematical Journal |
publisher.none.fl_str_mv |
Michigan Mathematical Journal |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981074350637056 |
score |
12.48226 |