New non-compact Calabi–Yau metrics in D = 6

Autores
Santillán, Osvaldo Pablo
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
 A method for constructing explicit Calabi-Yau metrics in six dimensions in terms of an initial hyperkahler structure is presented. The equations to solve are non linear in general, but become linear when the objects describing the metric depend on only one complex coordinate of the hyperkahler 4-dimensional space and its complex conjugated. This situation in particular gives a dual description of D6-branes wrapping a complex 1-cycle inside the hyperkahler space, which was studied by Fayyazuddin. The present work generalize the construction given by him. But the explicit solutions we present correspond to the non linear problem. This is a non linear equation with respect to two variables which, with the help of some specific anzatz, is reduced to a non linear equation with a single variable solvable in terms of elliptic functions. In these terms we construct an infinite family of non compact Calabi-Yau metrics.
Fil: Santillán, Osvaldo Pablo. Trinity College; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Calabi-Yau
Ecuaciones no lineales
Espacios Ricci-flat
Holonomìa especial
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15077

id CONICETDig_d2f729fefe6038f087a6ab7d4148bebd
oai_identifier_str oai:ri.conicet.gov.ar:11336/15077
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling New non-compact Calabi–Yau metrics in D = 6Santillán, Osvaldo PabloCalabi-YauEcuaciones no linealesEspacios Ricci-flatHolonomìa especialhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1 A method for constructing explicit Calabi-Yau metrics in six dimensions in terms of an initial hyperkahler structure is presented. The equations to solve are non linear in general, but become linear when the objects describing the metric depend on only one complex coordinate of the hyperkahler 4-dimensional space and its complex conjugated. This situation in particular gives a dual description of D6-branes wrapping a complex 1-cycle inside the hyperkahler space, which was studied by Fayyazuddin. The present work generalize the construction given by him. But the explicit solutions we present correspond to the non linear problem. This is a non linear equation with respect to two variables which, with the help of some specific anzatz, is reduced to a non linear equation with a single variable solvable in terms of elliptic functions. In these terms we construct an infinite family of non compact Calabi-Yau metrics.Fil: Santillán, Osvaldo Pablo. Trinity College; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaIop Publishing2010-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15077Santillán, Osvaldo Pablo; New non-compact Calabi–Yau metrics in D = 6; Iop Publishing; Classical And Quantum Gravity; 27; 15; 6-2010; 1-18; 1550130264-9381enginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0264-9381/27/15/155013info:eu-repo/semantics/altIdentifier/doi/10.1088/0264-9381/27/15/155013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:53Zoai:ri.conicet.gov.ar:11336/15077instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:53.833CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv New non-compact Calabi–Yau metrics in D = 6
title New non-compact Calabi–Yau metrics in D = 6
spellingShingle New non-compact Calabi–Yau metrics in D = 6
Santillán, Osvaldo Pablo
Calabi-Yau
Ecuaciones no lineales
Espacios Ricci-flat
Holonomìa especial
title_short New non-compact Calabi–Yau metrics in D = 6
title_full New non-compact Calabi–Yau metrics in D = 6
title_fullStr New non-compact Calabi–Yau metrics in D = 6
title_full_unstemmed New non-compact Calabi–Yau metrics in D = 6
title_sort New non-compact Calabi–Yau metrics in D = 6
dc.creator.none.fl_str_mv Santillán, Osvaldo Pablo
author Santillán, Osvaldo Pablo
author_facet Santillán, Osvaldo Pablo
author_role author
dc.subject.none.fl_str_mv Calabi-Yau
Ecuaciones no lineales
Espacios Ricci-flat
Holonomìa especial
topic Calabi-Yau
Ecuaciones no lineales
Espacios Ricci-flat
Holonomìa especial
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv  A method for constructing explicit Calabi-Yau metrics in six dimensions in terms of an initial hyperkahler structure is presented. The equations to solve are non linear in general, but become linear when the objects describing the metric depend on only one complex coordinate of the hyperkahler 4-dimensional space and its complex conjugated. This situation in particular gives a dual description of D6-branes wrapping a complex 1-cycle inside the hyperkahler space, which was studied by Fayyazuddin. The present work generalize the construction given by him. But the explicit solutions we present correspond to the non linear problem. This is a non linear equation with respect to two variables which, with the help of some specific anzatz, is reduced to a non linear equation with a single variable solvable in terms of elliptic functions. In these terms we construct an infinite family of non compact Calabi-Yau metrics.
Fil: Santillán, Osvaldo Pablo. Trinity College; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description  A method for constructing explicit Calabi-Yau metrics in six dimensions in terms of an initial hyperkahler structure is presented. The equations to solve are non linear in general, but become linear when the objects describing the metric depend on only one complex coordinate of the hyperkahler 4-dimensional space and its complex conjugated. This situation in particular gives a dual description of D6-branes wrapping a complex 1-cycle inside the hyperkahler space, which was studied by Fayyazuddin. The present work generalize the construction given by him. But the explicit solutions we present correspond to the non linear problem. This is a non linear equation with respect to two variables which, with the help of some specific anzatz, is reduced to a non linear equation with a single variable solvable in terms of elliptic functions. In these terms we construct an infinite family of non compact Calabi-Yau metrics.
publishDate 2010
dc.date.none.fl_str_mv 2010-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15077
Santillán, Osvaldo Pablo; New non-compact Calabi–Yau metrics in D = 6; Iop Publishing; Classical And Quantum Gravity; 27; 15; 6-2010; 1-18; 155013
0264-9381
url http://hdl.handle.net/11336/15077
identifier_str_mv Santillán, Osvaldo Pablo; New non-compact Calabi–Yau metrics in D = 6; Iop Publishing; Classical And Quantum Gravity; 27; 15; 6-2010; 1-18; 155013
0264-9381
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0264-9381/27/15/155013
info:eu-repo/semantics/altIdentifier/doi/10.1088/0264-9381/27/15/155013
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Iop Publishing
publisher.none.fl_str_mv Iop Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613728623919104
score 13.070432