On syzygies over 2-Calabi–Yau tilted algebras
- Autores
- Garcia Elsener, Ana Clara; Schiffler, Ralf
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We characterize the syzygies and co-syzygies over 2-Calabi–Yau tilted algebras in terms of the Auslander–Reiten translation and the syzygy functor. We explore connections between the category of syzygies, the category of Cohen–Macaulay modules, the representation dimension of algebras and the Igusa–Todorov functions. In particular, we prove that the Igusa–Todorov dimensions of d-Gorenstein algebras are equal to d. For cluster-tilted algebras of Dynkin type D, we give a geometric description of the stable Cohen–Macaulay category in terms of tagged arcs in the punctured disc. We also describe the action of the syzygy functor in a geometric way. This description allows us to compute the Auslander–Reiten quiver of the stable Cohen–Macaulay category using tagged arcs and geometric moves.
Fil: Garcia Elsener, Ana Clara. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina
Fil: Schiffler, Ralf. University of Connecticut; Estados Unidos - Materia
-
2-CALABI–YAU TILTED ALGEBRA
CLUSTER-TILTED ALGEBRA
COHEN–MACAULAY MODULE
IGUSA–TODOROV FUNCTION
PUNCTURED POLYGON
SYZYGY
TRIANGULATED SURFACE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/178786
Ver los metadatos del registro completo
id |
CONICETDig_0b6cddfc19adda304d8cf1fda72d135f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/178786 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On syzygies over 2-Calabi–Yau tilted algebrasGarcia Elsener, Ana ClaraSchiffler, Ralf2-CALABI–YAU TILTED ALGEBRACLUSTER-TILTED ALGEBRACOHEN–MACAULAY MODULEIGUSA–TODOROV FUNCTIONPUNCTURED POLYGONSYZYGYTRIANGULATED SURFACEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We characterize the syzygies and co-syzygies over 2-Calabi–Yau tilted algebras in terms of the Auslander–Reiten translation and the syzygy functor. We explore connections between the category of syzygies, the category of Cohen–Macaulay modules, the representation dimension of algebras and the Igusa–Todorov functions. In particular, we prove that the Igusa–Todorov dimensions of d-Gorenstein algebras are equal to d. For cluster-tilted algebras of Dynkin type D, we give a geometric description of the stable Cohen–Macaulay category in terms of tagged arcs in the punctured disc. We also describe the action of the syzygy functor in a geometric way. This description allows us to compute the Auslander–Reiten quiver of the stable Cohen–Macaulay category using tagged arcs and geometric moves.Fil: Garcia Elsener, Ana Clara. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Schiffler, Ralf. University of Connecticut; Estados UnidosAcademic Press Inc Elsevier Science2017-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/178786Garcia Elsener, Ana Clara; Schiffler, Ralf; On syzygies over 2-Calabi–Yau tilted algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 470; 1-2017; 91-1210021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2016.08.035info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:30:54Zoai:ri.conicet.gov.ar:11336/178786instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:30:55.192CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On syzygies over 2-Calabi–Yau tilted algebras |
title |
On syzygies over 2-Calabi–Yau tilted algebras |
spellingShingle |
On syzygies over 2-Calabi–Yau tilted algebras Garcia Elsener, Ana Clara 2-CALABI–YAU TILTED ALGEBRA CLUSTER-TILTED ALGEBRA COHEN–MACAULAY MODULE IGUSA–TODOROV FUNCTION PUNCTURED POLYGON SYZYGY TRIANGULATED SURFACE |
title_short |
On syzygies over 2-Calabi–Yau tilted algebras |
title_full |
On syzygies over 2-Calabi–Yau tilted algebras |
title_fullStr |
On syzygies over 2-Calabi–Yau tilted algebras |
title_full_unstemmed |
On syzygies over 2-Calabi–Yau tilted algebras |
title_sort |
On syzygies over 2-Calabi–Yau tilted algebras |
dc.creator.none.fl_str_mv |
Garcia Elsener, Ana Clara Schiffler, Ralf |
author |
Garcia Elsener, Ana Clara |
author_facet |
Garcia Elsener, Ana Clara Schiffler, Ralf |
author_role |
author |
author2 |
Schiffler, Ralf |
author2_role |
author |
dc.subject.none.fl_str_mv |
2-CALABI–YAU TILTED ALGEBRA CLUSTER-TILTED ALGEBRA COHEN–MACAULAY MODULE IGUSA–TODOROV FUNCTION PUNCTURED POLYGON SYZYGY TRIANGULATED SURFACE |
topic |
2-CALABI–YAU TILTED ALGEBRA CLUSTER-TILTED ALGEBRA COHEN–MACAULAY MODULE IGUSA–TODOROV FUNCTION PUNCTURED POLYGON SYZYGY TRIANGULATED SURFACE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We characterize the syzygies and co-syzygies over 2-Calabi–Yau tilted algebras in terms of the Auslander–Reiten translation and the syzygy functor. We explore connections between the category of syzygies, the category of Cohen–Macaulay modules, the representation dimension of algebras and the Igusa–Todorov functions. In particular, we prove that the Igusa–Todorov dimensions of d-Gorenstein algebras are equal to d. For cluster-tilted algebras of Dynkin type D, we give a geometric description of the stable Cohen–Macaulay category in terms of tagged arcs in the punctured disc. We also describe the action of the syzygy functor in a geometric way. This description allows us to compute the Auslander–Reiten quiver of the stable Cohen–Macaulay category using tagged arcs and geometric moves. Fil: Garcia Elsener, Ana Clara. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina Fil: Schiffler, Ralf. University of Connecticut; Estados Unidos |
description |
We characterize the syzygies and co-syzygies over 2-Calabi–Yau tilted algebras in terms of the Auslander–Reiten translation and the syzygy functor. We explore connections between the category of syzygies, the category of Cohen–Macaulay modules, the representation dimension of algebras and the Igusa–Todorov functions. In particular, we prove that the Igusa–Todorov dimensions of d-Gorenstein algebras are equal to d. For cluster-tilted algebras of Dynkin type D, we give a geometric description of the stable Cohen–Macaulay category in terms of tagged arcs in the punctured disc. We also describe the action of the syzygy functor in a geometric way. This description allows us to compute the Auslander–Reiten quiver of the stable Cohen–Macaulay category using tagged arcs and geometric moves. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/178786 Garcia Elsener, Ana Clara; Schiffler, Ralf; On syzygies over 2-Calabi–Yau tilted algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 470; 1-2017; 91-121 0021-8693 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/178786 |
identifier_str_mv |
Garcia Elsener, Ana Clara; Schiffler, Ralf; On syzygies over 2-Calabi–Yau tilted algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 470; 1-2017; 91-121 0021-8693 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2016.08.035 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606666924261376 |
score |
13.001348 |