Complete Calabi-Yau metrics from Kahler metrics in D=4

Autores
Leston, Mauricio; Santillán, Osvaldo Pablo
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the present work, a family of Calabi-Yau manifolds with a local Hamiltonian Killing vector is described in terms of a nonlinear equation whose solutions determine the local form of the geometries. The main assumptions are that the complex (3, 0)-form is of the form eik , where is preserved by the Killing vector, and that the space of the orbits of the Killing vector is, for fixed value of the momentum map coordinate, a complex 4-manifold, in such a way that the complex structure of the 4-manifold is part of the complex structure of the complex 3-fold. The family considered here include the ones considered in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007); O. P. Santillan, Classical Quantum Gravity 27, 155013 (2010); H. Lu, Y. Pang, and Z. Wang, Classical Quantum Gravity 27, 155018 (2010) as a particular case. We also present an explicit example with holonomy exactly SU(3) by use of the linearization introduced in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007), which was considered in the context of D6 branes wrapping a complex 1-cycle in a hyperkahler 2-fold.
Fil: Leston, Mauricio. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
Calabi-Yau
Generalizaciones de la ecuaciòn de Toda SU-infinito
Vectores de killing hamiltonianos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/265650

id CONICETDig_1d2d5e3b30ca37f5d27c4b86eb57f78c
oai_identifier_str oai:ri.conicet.gov.ar:11336/265650
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Complete Calabi-Yau metrics from Kahler metrics in D=4Leston, MauricioSantillán, Osvaldo PabloCalabi-YauGeneralizaciones de la ecuaciòn de Toda SU-infinitoVectores de killing hamiltonianoshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In the present work, a family of Calabi-Yau manifolds with a local Hamiltonian Killing vector is described in terms of a nonlinear equation whose solutions determine the local form of the geometries. The main assumptions are that the complex (3, 0)-form is of the form eik , where is preserved by the Killing vector, and that the space of the orbits of the Killing vector is, for fixed value of the momentum map coordinate, a complex 4-manifold, in such a way that the complex structure of the 4-manifold is part of the complex structure of the complex 3-fold. The family considered here include the ones considered in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007); O. P. Santillan, Classical Quantum Gravity 27, 155013 (2010); H. Lu, Y. Pang, and Z. Wang, Classical Quantum Gravity 27, 155018 (2010) as a particular case. We also present an explicit example with holonomy exactly SU(3) by use of the linearization introduced in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007), which was considered in the context of D6 branes wrapping a complex 1-cycle in a hyperkahler 2-fold.Fil: Leston, Mauricio. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAmerican Physical Society2010-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265650Leston, Mauricio; Santillán, Osvaldo Pablo; Complete Calabi-Yau metrics from Kahler metrics in D=4; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 82; 8; 10-2010; 1-101550-7998CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.82.085004info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.82.085004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:28Zoai:ri.conicet.gov.ar:11336/265650instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:28.571CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Complete Calabi-Yau metrics from Kahler metrics in D=4
title Complete Calabi-Yau metrics from Kahler metrics in D=4
spellingShingle Complete Calabi-Yau metrics from Kahler metrics in D=4
Leston, Mauricio
Calabi-Yau
Generalizaciones de la ecuaciòn de Toda SU-infinito
Vectores de killing hamiltonianos
title_short Complete Calabi-Yau metrics from Kahler metrics in D=4
title_full Complete Calabi-Yau metrics from Kahler metrics in D=4
title_fullStr Complete Calabi-Yau metrics from Kahler metrics in D=4
title_full_unstemmed Complete Calabi-Yau metrics from Kahler metrics in D=4
title_sort Complete Calabi-Yau metrics from Kahler metrics in D=4
dc.creator.none.fl_str_mv Leston, Mauricio
Santillán, Osvaldo Pablo
author Leston, Mauricio
author_facet Leston, Mauricio
Santillán, Osvaldo Pablo
author_role author
author2 Santillán, Osvaldo Pablo
author2_role author
dc.subject.none.fl_str_mv Calabi-Yau
Generalizaciones de la ecuaciòn de Toda SU-infinito
Vectores de killing hamiltonianos
topic Calabi-Yau
Generalizaciones de la ecuaciòn de Toda SU-infinito
Vectores de killing hamiltonianos
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the present work, a family of Calabi-Yau manifolds with a local Hamiltonian Killing vector is described in terms of a nonlinear equation whose solutions determine the local form of the geometries. The main assumptions are that the complex (3, 0)-form is of the form eik , where is preserved by the Killing vector, and that the space of the orbits of the Killing vector is, for fixed value of the momentum map coordinate, a complex 4-manifold, in such a way that the complex structure of the 4-manifold is part of the complex structure of the complex 3-fold. The family considered here include the ones considered in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007); O. P. Santillan, Classical Quantum Gravity 27, 155013 (2010); H. Lu, Y. Pang, and Z. Wang, Classical Quantum Gravity 27, 155018 (2010) as a particular case. We also present an explicit example with holonomy exactly SU(3) by use of the linearization introduced in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007), which was considered in the context of D6 branes wrapping a complex 1-cycle in a hyperkahler 2-fold.
Fil: Leston, Mauricio. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description In the present work, a family of Calabi-Yau manifolds with a local Hamiltonian Killing vector is described in terms of a nonlinear equation whose solutions determine the local form of the geometries. The main assumptions are that the complex (3, 0)-form is of the form eik , where is preserved by the Killing vector, and that the space of the orbits of the Killing vector is, for fixed value of the momentum map coordinate, a complex 4-manifold, in such a way that the complex structure of the 4-manifold is part of the complex structure of the complex 3-fold. The family considered here include the ones considered in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007); O. P. Santillan, Classical Quantum Gravity 27, 155013 (2010); H. Lu, Y. Pang, and Z. Wang, Classical Quantum Gravity 27, 155018 (2010) as a particular case. We also present an explicit example with holonomy exactly SU(3) by use of the linearization introduced in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007), which was considered in the context of D6 branes wrapping a complex 1-cycle in a hyperkahler 2-fold.
publishDate 2010
dc.date.none.fl_str_mv 2010-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/265650
Leston, Mauricio; Santillán, Osvaldo Pablo; Complete Calabi-Yau metrics from Kahler metrics in D=4; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 82; 8; 10-2010; 1-10
1550-7998
CONICET Digital
CONICET
url http://hdl.handle.net/11336/265650
identifier_str_mv Leston, Mauricio; Santillán, Osvaldo Pablo; Complete Calabi-Yau metrics from Kahler metrics in D=4; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 82; 8; 10-2010; 1-10
1550-7998
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.82.085004
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.82.085004
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613215535759360
score 13.070432