Complete Calabi-Yau metrics from Kahler metrics in D=4
- Autores
- Leston, Mauricio; Santillán, Osvaldo Pablo
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the present work, a family of Calabi-Yau manifolds with a local Hamiltonian Killing vector is described in terms of a nonlinear equation whose solutions determine the local form of the geometries. The main assumptions are that the complex (3, 0)-form is of the form eik , where is preserved by the Killing vector, and that the space of the orbits of the Killing vector is, for fixed value of the momentum map coordinate, a complex 4-manifold, in such a way that the complex structure of the 4-manifold is part of the complex structure of the complex 3-fold. The family considered here include the ones considered in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007); O. P. Santillan, Classical Quantum Gravity 27, 155013 (2010); H. Lu, Y. Pang, and Z. Wang, Classical Quantum Gravity 27, 155018 (2010) as a particular case. We also present an explicit example with holonomy exactly SU(3) by use of the linearization introduced in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007), which was considered in the context of D6 branes wrapping a complex 1-cycle in a hyperkahler 2-fold.
Fil: Leston, Mauricio. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
Calabi-Yau
Generalizaciones de la ecuaciòn de Toda SU-infinito
Vectores de killing hamiltonianos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265650
Ver los metadatos del registro completo
id |
CONICETDig_1d2d5e3b30ca37f5d27c4b86eb57f78c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265650 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Complete Calabi-Yau metrics from Kahler metrics in D=4Leston, MauricioSantillán, Osvaldo PabloCalabi-YauGeneralizaciones de la ecuaciòn de Toda SU-infinitoVectores de killing hamiltonianoshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In the present work, a family of Calabi-Yau manifolds with a local Hamiltonian Killing vector is described in terms of a nonlinear equation whose solutions determine the local form of the geometries. The main assumptions are that the complex (3, 0)-form is of the form eik , where is preserved by the Killing vector, and that the space of the orbits of the Killing vector is, for fixed value of the momentum map coordinate, a complex 4-manifold, in such a way that the complex structure of the 4-manifold is part of the complex structure of the complex 3-fold. The family considered here include the ones considered in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007); O. P. Santillan, Classical Quantum Gravity 27, 155013 (2010); H. Lu, Y. Pang, and Z. Wang, Classical Quantum Gravity 27, 155018 (2010) as a particular case. We also present an explicit example with holonomy exactly SU(3) by use of the linearization introduced in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007), which was considered in the context of D6 branes wrapping a complex 1-cycle in a hyperkahler 2-fold.Fil: Leston, Mauricio. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAmerican Physical Society2010-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265650Leston, Mauricio; Santillán, Osvaldo Pablo; Complete Calabi-Yau metrics from Kahler metrics in D=4; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 82; 8; 10-2010; 1-101550-7998CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.82.085004info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.82.085004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:28Zoai:ri.conicet.gov.ar:11336/265650instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:28.571CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Complete Calabi-Yau metrics from Kahler metrics in D=4 |
title |
Complete Calabi-Yau metrics from Kahler metrics in D=4 |
spellingShingle |
Complete Calabi-Yau metrics from Kahler metrics in D=4 Leston, Mauricio Calabi-Yau Generalizaciones de la ecuaciòn de Toda SU-infinito Vectores de killing hamiltonianos |
title_short |
Complete Calabi-Yau metrics from Kahler metrics in D=4 |
title_full |
Complete Calabi-Yau metrics from Kahler metrics in D=4 |
title_fullStr |
Complete Calabi-Yau metrics from Kahler metrics in D=4 |
title_full_unstemmed |
Complete Calabi-Yau metrics from Kahler metrics in D=4 |
title_sort |
Complete Calabi-Yau metrics from Kahler metrics in D=4 |
dc.creator.none.fl_str_mv |
Leston, Mauricio Santillán, Osvaldo Pablo |
author |
Leston, Mauricio |
author_facet |
Leston, Mauricio Santillán, Osvaldo Pablo |
author_role |
author |
author2 |
Santillán, Osvaldo Pablo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Calabi-Yau Generalizaciones de la ecuaciòn de Toda SU-infinito Vectores de killing hamiltonianos |
topic |
Calabi-Yau Generalizaciones de la ecuaciòn de Toda SU-infinito Vectores de killing hamiltonianos |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the present work, a family of Calabi-Yau manifolds with a local Hamiltonian Killing vector is described in terms of a nonlinear equation whose solutions determine the local form of the geometries. The main assumptions are that the complex (3, 0)-form is of the form eik , where is preserved by the Killing vector, and that the space of the orbits of the Killing vector is, for fixed value of the momentum map coordinate, a complex 4-manifold, in such a way that the complex structure of the 4-manifold is part of the complex structure of the complex 3-fold. The family considered here include the ones considered in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007); O. P. Santillan, Classical Quantum Gravity 27, 155013 (2010); H. Lu, Y. Pang, and Z. Wang, Classical Quantum Gravity 27, 155018 (2010) as a particular case. We also present an explicit example with holonomy exactly SU(3) by use of the linearization introduced in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007), which was considered in the context of D6 branes wrapping a complex 1-cycle in a hyperkahler 2-fold. Fil: Leston, Mauricio. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
In the present work, a family of Calabi-Yau manifolds with a local Hamiltonian Killing vector is described in terms of a nonlinear equation whose solutions determine the local form of the geometries. The main assumptions are that the complex (3, 0)-form is of the form eik , where is preserved by the Killing vector, and that the space of the orbits of the Killing vector is, for fixed value of the momentum map coordinate, a complex 4-manifold, in such a way that the complex structure of the 4-manifold is part of the complex structure of the complex 3-fold. The family considered here include the ones considered in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007); O. P. Santillan, Classical Quantum Gravity 27, 155013 (2010); H. Lu, Y. Pang, and Z. Wang, Classical Quantum Gravity 27, 155018 (2010) as a particular case. We also present an explicit example with holonomy exactly SU(3) by use of the linearization introduced in A. Fayyazuddin, Classical Quantum Gravity 24, 3151 (2007), which was considered in the context of D6 branes wrapping a complex 1-cycle in a hyperkahler 2-fold. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265650 Leston, Mauricio; Santillán, Osvaldo Pablo; Complete Calabi-Yau metrics from Kahler metrics in D=4; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 82; 8; 10-2010; 1-10 1550-7998 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/265650 |
identifier_str_mv |
Leston, Mauricio; Santillán, Osvaldo Pablo; Complete Calabi-Yau metrics from Kahler metrics in D=4; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 82; 8; 10-2010; 1-10 1550-7998 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.82.085004 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.82.085004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613215535759360 |
score |
13.070432 |