Stable solutions of equations with a quadratic gradient term
- Autores
- Afonso Mourao Terra, Joana Isabel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider positive solutions to a non-variational family of equations of the form−∆u − b(x)|∇u| 2 = λg(u) in Ω,where λ ≥ 0, b(x) is a given function, g is an increasing nonlinearity with g(0) > 0 and Ω ∈ R n isa bounded smooth domain. We introduce the definition of stability for nonvariational problemsand establish existence and regularity results for stable solutions. These results generalize theclasical results obtained when b(x) = b is a constant function making the problem variationalafter a suitable transformation.
Fil: Afonso Mourao Terra, Joana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina - Materia
-
Elliptic Equations
Gradient Quadratic term
stable solutions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18910
Ver los metadatos del registro completo
id |
CONICETDig_d2acdacc2322a0749848054b5f0dbec1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18910 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stable solutions of equations with a quadratic gradient termAfonso Mourao Terra, Joana IsabelElliptic EquationsGradient Quadratic termstable solutionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider positive solutions to a non-variational family of equations of the form−∆u − b(x)|∇u| 2 = λg(u) in Ω,where λ ≥ 0, b(x) is a given function, g is an increasing nonlinearity with g(0) > 0 and Ω ∈ R n isa bounded smooth domain. We introduce the definition of stability for nonvariational problemsand establish existence and regularity results for stable solutions. These results generalize theclasical results obtained when b(x) = b is a constant function making the problem variationalafter a suitable transformation.Fil: Afonso Mourao Terra, Joana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaTexas State University. Department of Mathematics2016-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18910Afonso Mourao Terra, Joana Isabel; Stable solutions of equations with a quadratic gradient term; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2016; 196; 9-2016; 1-221072-6691CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2016/196/abstr.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:15:15Zoai:ri.conicet.gov.ar:11336/18910instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:15:15.437CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stable solutions of equations with a quadratic gradient term |
title |
Stable solutions of equations with a quadratic gradient term |
spellingShingle |
Stable solutions of equations with a quadratic gradient term Afonso Mourao Terra, Joana Isabel Elliptic Equations Gradient Quadratic term stable solutions |
title_short |
Stable solutions of equations with a quadratic gradient term |
title_full |
Stable solutions of equations with a quadratic gradient term |
title_fullStr |
Stable solutions of equations with a quadratic gradient term |
title_full_unstemmed |
Stable solutions of equations with a quadratic gradient term |
title_sort |
Stable solutions of equations with a quadratic gradient term |
dc.creator.none.fl_str_mv |
Afonso Mourao Terra, Joana Isabel |
author |
Afonso Mourao Terra, Joana Isabel |
author_facet |
Afonso Mourao Terra, Joana Isabel |
author_role |
author |
dc.subject.none.fl_str_mv |
Elliptic Equations Gradient Quadratic term stable solutions |
topic |
Elliptic Equations Gradient Quadratic term stable solutions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider positive solutions to a non-variational family of equations of the form−∆u − b(x)|∇u| 2 = λg(u) in Ω,where λ ≥ 0, b(x) is a given function, g is an increasing nonlinearity with g(0) > 0 and Ω ∈ R n isa bounded smooth domain. We introduce the definition of stability for nonvariational problemsand establish existence and regularity results for stable solutions. These results generalize theclasical results obtained when b(x) = b is a constant function making the problem variationalafter a suitable transformation. Fil: Afonso Mourao Terra, Joana Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina |
description |
We consider positive solutions to a non-variational family of equations of the form−∆u − b(x)|∇u| 2 = λg(u) in Ω,where λ ≥ 0, b(x) is a given function, g is an increasing nonlinearity with g(0) > 0 and Ω ∈ R n isa bounded smooth domain. We introduce the definition of stability for nonvariational problemsand establish existence and regularity results for stable solutions. These results generalize theclasical results obtained when b(x) = b is a constant function making the problem variationalafter a suitable transformation. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18910 Afonso Mourao Terra, Joana Isabel; Stable solutions of equations with a quadratic gradient term; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2016; 196; 9-2016; 1-22 1072-6691 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18910 |
identifier_str_mv |
Afonso Mourao Terra, Joana Isabel; Stable solutions of equations with a quadratic gradient term; Texas State University. Department of Mathematics; Electronic Journal of Differential Equations; 2016; 196; 9-2016; 1-22 1072-6691 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2016/196/abstr.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Texas State University. Department of Mathematics |
publisher.none.fl_str_mv |
Texas State University. Department of Mathematics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614087654244352 |
score |
13.070432 |