Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations

Autores
Ferrari, Alberto José; Lara, Luis Pedro; Santillan Marcus, Eduardo Adrian
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this study, a new form of a quadratic spline is obtained, where the coefficients are determined explicitly by variational methods. Convergence is studied and parity conservation is demonstrated. Finally, the method is applied to solve integral equations.
Fil: Ferrari, Alberto José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Lara, Luis Pedro. Universidad del Centro Educativo Latinoamericano; Argentina
Fil: Santillan Marcus, Eduardo Adrian. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
QUADRATIC SPLINE
FREDHOLM-VOLTERRA EQUATIONS
FRACTIONAL DIFFERENTIAL EQUATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/174577

id CONICETDig_88fcb632388ea97e2e34b541240a4d44
oai_identifier_str oai:ri.conicet.gov.ar:11336/174577
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equationsFerrari, Alberto JoséLara, Luis PedroSantillan Marcus, Eduardo AdrianQUADRATIC SPLINEFREDHOLM-VOLTERRA EQUATIONSFRACTIONAL DIFFERENTIAL EQUATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this study, a new form of a quadratic spline is obtained, where the coefficients are determined explicitly by variational methods. Convergence is studied and parity conservation is demonstrated. Finally, the method is applied to solve integral equations.Fil: Ferrari, Alberto José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Lara, Luis Pedro. Universidad del Centro Educativo Latinoamericano; ArgentinaFil: Santillan Marcus, Eduardo Adrian. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaSpringer2020-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/174577Ferrari, Alberto José; Lara, Luis Pedro; Santillan Marcus, Eduardo Adrian; Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations; Springer; Journal of the Egyptian Mathematical Society; 28; 1; 6-2020; 1-142090-9128CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://joems.springeropen.com/articles/10.1186/s42787-020-00091-7info:eu-repo/semantics/altIdentifier/doi/10.1186/s42787-020-00091-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:03Zoai:ri.conicet.gov.ar:11336/174577instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:04.133CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations
title Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations
spellingShingle Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations
Ferrari, Alberto José
QUADRATIC SPLINE
FREDHOLM-VOLTERRA EQUATIONS
FRACTIONAL DIFFERENTIAL EQUATIONS
title_short Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations
title_full Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations
title_fullStr Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations
title_full_unstemmed Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations
title_sort Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations
dc.creator.none.fl_str_mv Ferrari, Alberto José
Lara, Luis Pedro
Santillan Marcus, Eduardo Adrian
author Ferrari, Alberto José
author_facet Ferrari, Alberto José
Lara, Luis Pedro
Santillan Marcus, Eduardo Adrian
author_role author
author2 Lara, Luis Pedro
Santillan Marcus, Eduardo Adrian
author2_role author
author
dc.subject.none.fl_str_mv QUADRATIC SPLINE
FREDHOLM-VOLTERRA EQUATIONS
FRACTIONAL DIFFERENTIAL EQUATIONS
topic QUADRATIC SPLINE
FREDHOLM-VOLTERRA EQUATIONS
FRACTIONAL DIFFERENTIAL EQUATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this study, a new form of a quadratic spline is obtained, where the coefficients are determined explicitly by variational methods. Convergence is studied and parity conservation is demonstrated. Finally, the method is applied to solve integral equations.
Fil: Ferrari, Alberto José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Lara, Luis Pedro. Universidad del Centro Educativo Latinoamericano; Argentina
Fil: Santillan Marcus, Eduardo Adrian. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description In this study, a new form of a quadratic spline is obtained, where the coefficients are determined explicitly by variational methods. Convergence is studied and parity conservation is demonstrated. Finally, the method is applied to solve integral equations.
publishDate 2020
dc.date.none.fl_str_mv 2020-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/174577
Ferrari, Alberto José; Lara, Luis Pedro; Santillan Marcus, Eduardo Adrian; Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations; Springer; Journal of the Egyptian Mathematical Society; 28; 1; 6-2020; 1-14
2090-9128
CONICET Digital
CONICET
url http://hdl.handle.net/11336/174577
identifier_str_mv Ferrari, Alberto José; Lara, Luis Pedro; Santillan Marcus, Eduardo Adrian; Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations; Springer; Journal of the Egyptian Mathematical Society; 28; 1; 6-2020; 1-14
2090-9128
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://joems.springeropen.com/articles/10.1186/s42787-020-00091-7
info:eu-repo/semantics/altIdentifier/doi/10.1186/s42787-020-00091-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269322009903104
score 13.13397