Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations
- Autores
- Ferrari, Alberto José; Lara, Luis Pedro; Santillan Marcus, Eduardo Adrian
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this study, a new form of a quadratic spline is obtained, where the coefficients are determined explicitly by variational methods. Convergence is studied and parity conservation is demonstrated. Finally, the method is applied to solve integral equations.
Fil: Ferrari, Alberto José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Lara, Luis Pedro. Universidad del Centro Educativo Latinoamericano; Argentina
Fil: Santillan Marcus, Eduardo Adrian. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
QUADRATIC SPLINE
FREDHOLM-VOLTERRA EQUATIONS
FRACTIONAL DIFFERENTIAL EQUATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/174577
Ver los metadatos del registro completo
id |
CONICETDig_88fcb632388ea97e2e34b541240a4d44 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/174577 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equationsFerrari, Alberto JoséLara, Luis PedroSantillan Marcus, Eduardo AdrianQUADRATIC SPLINEFREDHOLM-VOLTERRA EQUATIONSFRACTIONAL DIFFERENTIAL EQUATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this study, a new form of a quadratic spline is obtained, where the coefficients are determined explicitly by variational methods. Convergence is studied and parity conservation is demonstrated. Finally, the method is applied to solve integral equations.Fil: Ferrari, Alberto José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Lara, Luis Pedro. Universidad del Centro Educativo Latinoamericano; ArgentinaFil: Santillan Marcus, Eduardo Adrian. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaSpringer2020-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/174577Ferrari, Alberto José; Lara, Luis Pedro; Santillan Marcus, Eduardo Adrian; Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations; Springer; Journal of the Egyptian Mathematical Society; 28; 1; 6-2020; 1-142090-9128CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://joems.springeropen.com/articles/10.1186/s42787-020-00091-7info:eu-repo/semantics/altIdentifier/doi/10.1186/s42787-020-00091-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:03Zoai:ri.conicet.gov.ar:11336/174577instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:04.133CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations |
title |
Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations |
spellingShingle |
Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations Ferrari, Alberto José QUADRATIC SPLINE FREDHOLM-VOLTERRA EQUATIONS FRACTIONAL DIFFERENTIAL EQUATIONS |
title_short |
Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations |
title_full |
Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations |
title_fullStr |
Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations |
title_full_unstemmed |
Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations |
title_sort |
Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations |
dc.creator.none.fl_str_mv |
Ferrari, Alberto José Lara, Luis Pedro Santillan Marcus, Eduardo Adrian |
author |
Ferrari, Alberto José |
author_facet |
Ferrari, Alberto José Lara, Luis Pedro Santillan Marcus, Eduardo Adrian |
author_role |
author |
author2 |
Lara, Luis Pedro Santillan Marcus, Eduardo Adrian |
author2_role |
author author |
dc.subject.none.fl_str_mv |
QUADRATIC SPLINE FREDHOLM-VOLTERRA EQUATIONS FRACTIONAL DIFFERENTIAL EQUATIONS |
topic |
QUADRATIC SPLINE FREDHOLM-VOLTERRA EQUATIONS FRACTIONAL DIFFERENTIAL EQUATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this study, a new form of a quadratic spline is obtained, where the coefficients are determined explicitly by variational methods. Convergence is studied and parity conservation is demonstrated. Finally, the method is applied to solve integral equations. Fil: Ferrari, Alberto José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Lara, Luis Pedro. Universidad del Centro Educativo Latinoamericano; Argentina Fil: Santillan Marcus, Eduardo Adrian. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
In this study, a new form of a quadratic spline is obtained, where the coefficients are determined explicitly by variational methods. Convergence is studied and parity conservation is demonstrated. Finally, the method is applied to solve integral equations. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/174577 Ferrari, Alberto José; Lara, Luis Pedro; Santillan Marcus, Eduardo Adrian; Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations; Springer; Journal of the Egyptian Mathematical Society; 28; 1; 6-2020; 1-14 2090-9128 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/174577 |
identifier_str_mv |
Ferrari, Alberto José; Lara, Luis Pedro; Santillan Marcus, Eduardo Adrian; Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations; Springer; Journal of the Egyptian Mathematical Society; 28; 1; 6-2020; 1-14 2090-9128 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://joems.springeropen.com/articles/10.1186/s42787-020-00091-7 info:eu-repo/semantics/altIdentifier/doi/10.1186/s42787-020-00091-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269322009903104 |
score |
13.13397 |