Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases

Autores
D'amico, Edith Maria Belen; Calandrini, Guillermo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional
quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and Grobner bases to a single-input single-output representation of the system. A detailed study of a generalized scalar quadratic map and a well-known delayed logistic model is included for illustration. In the former example, conditions for the existence of bistability phenomenon are also introduced.
Fil: D'amico, Edith Maria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina
Fil: Calandrini, Guillermo. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina
Materia
PERIODIC OSCILLATIONS
QUADRATIC MAPS
ANALYTICAL SOLUTIONS
GROBNER BASES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/11775

id CONICETDig_e16261f68cc027ca38a35f05c5178aac
oai_identifier_str oai:ri.conicet.gov.ar:11336/11775
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner basesD'amico, Edith Maria BelenCalandrini, GuillermoPERIODIC OSCILLATIONSQUADRATIC MAPSANALYTICAL SOLUTIONSGROBNER BASEShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional<br />quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and Grobner bases to a single-input single-output representation of the system. A detailed study of a generalized scalar quadratic map and a well-known delayed logistic model is included for illustration. In the former example, conditions for the existence of bistability phenomenon are also introduced.Fil: D'amico, Edith Maria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; ArgentinaFil: Calandrini, Guillermo. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; ArgentinaAmerican Institute Of Physics2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11775D'amico, Edith Maria Belen; Calandrini, Guillermo; Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases; American Institute Of Physics; Chaos An Interdisciplinary Jr Of Nonlinear Science; 25; 11; 11-2015; 1-12; 1131131054-1500enginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/full/10.1063/1.4935955info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4935955info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:08Zoai:ri.conicet.gov.ar:11336/11775instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:08.809CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases
title Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases
spellingShingle Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases
D'amico, Edith Maria Belen
PERIODIC OSCILLATIONS
QUADRATIC MAPS
ANALYTICAL SOLUTIONS
GROBNER BASES
title_short Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases
title_full Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases
title_fullStr Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases
title_full_unstemmed Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases
title_sort Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases
dc.creator.none.fl_str_mv D'amico, Edith Maria Belen
Calandrini, Guillermo
author D'amico, Edith Maria Belen
author_facet D'amico, Edith Maria Belen
Calandrini, Guillermo
author_role author
author2 Calandrini, Guillermo
author2_role author
dc.subject.none.fl_str_mv PERIODIC OSCILLATIONS
QUADRATIC MAPS
ANALYTICAL SOLUTIONS
GROBNER BASES
topic PERIODIC OSCILLATIONS
QUADRATIC MAPS
ANALYTICAL SOLUTIONS
GROBNER BASES
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional<br />quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and Grobner bases to a single-input single-output representation of the system. A detailed study of a generalized scalar quadratic map and a well-known delayed logistic model is included for illustration. In the former example, conditions for the existence of bistability phenomenon are also introduced.
Fil: D'amico, Edith Maria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina
Fil: Calandrini, Guillermo. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación en Ingeniería Eléctrica; Argentina
description Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional<br />quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and Grobner bases to a single-input single-output representation of the system. A detailed study of a generalized scalar quadratic map and a well-known delayed logistic model is included for illustration. In the former example, conditions for the existence of bistability phenomenon are also introduced.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/11775
D'amico, Edith Maria Belen; Calandrini, Guillermo; Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases; American Institute Of Physics; Chaos An Interdisciplinary Jr Of Nonlinear Science; 25; 11; 11-2015; 1-12; 113113
1054-1500
url http://hdl.handle.net/11336/11775
identifier_str_mv D'amico, Edith Maria Belen; Calandrini, Guillermo; Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases; American Institute Of Physics; Chaos An Interdisciplinary Jr Of Nonlinear Science; 25; 11; 11-2015; 1-12; 113113
1054-1500
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/full/10.1063/1.4935955
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4935955
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute Of Physics
publisher.none.fl_str_mv American Institute Of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613688225431552
score 13.070432