Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings

Autores
Maidana Capitán, Melisa Beatriz; Cámpora, Nuria Elide; Sigvard, Claudio Sebastián; Kochen, Sara Silvia; Samengo, Ines
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity.
Fil: Maidana Capitán, Melisa Beatriz. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Cámpora, Nuria Elide. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; Argentina
Fil: Sigvard, Claudio Sebastián. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Kochen, Sara Silvia. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; Argentina
Fil: Samengo, Ines. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Materia
CONSCIOUSNESS
EEG
EPILEPSY
PRINCIPAL COMPONENT ANALYSIS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/126839

id CONICETDig_2334c45249bf9bf60c1c723a76cff676
oai_identifier_str oai:ri.conicet.gov.ar:11336/126839
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordingsMaidana Capitán, Melisa BeatrizCámpora, Nuria ElideSigvard, Claudio SebastiánKochen, Sara SilviaSamengo, InesCONSCIOUSNESSEEGEPILEPSYPRINCIPAL COMPONENT ANALYSIShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity.Fil: Maidana Capitán, Melisa Beatriz. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Cámpora, Nuria Elide. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; ArgentinaFil: Sigvard, Claudio Sebastián. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Kochen, Sara Silvia. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; ArgentinaFil: Samengo, Ines. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaSpringer2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/126839Maidana Capitán, Melisa Beatriz; Cámpora, Nuria Elide; Sigvard, Claudio Sebastián; Kochen, Sara Silvia; Samengo, Ines; Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings; Springer; Biological Cybernetics.; 114; 4-5; 10-2020; 461-4710340-1200CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00422-020-00840-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00422-020-00840-yinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1902.11236v2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:26Zoai:ri.conicet.gov.ar:11336/126839instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:26.786CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings
title Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings
spellingShingle Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings
Maidana Capitán, Melisa Beatriz
CONSCIOUSNESS
EEG
EPILEPSY
PRINCIPAL COMPONENT ANALYSIS
title_short Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings
title_full Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings
title_fullStr Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings
title_full_unstemmed Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings
title_sort Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings
dc.creator.none.fl_str_mv Maidana Capitán, Melisa Beatriz
Cámpora, Nuria Elide
Sigvard, Claudio Sebastián
Kochen, Sara Silvia
Samengo, Ines
author Maidana Capitán, Melisa Beatriz
author_facet Maidana Capitán, Melisa Beatriz
Cámpora, Nuria Elide
Sigvard, Claudio Sebastián
Kochen, Sara Silvia
Samengo, Ines
author_role author
author2 Cámpora, Nuria Elide
Sigvard, Claudio Sebastián
Kochen, Sara Silvia
Samengo, Ines
author2_role author
author
author
author
dc.subject.none.fl_str_mv CONSCIOUSNESS
EEG
EPILEPSY
PRINCIPAL COMPONENT ANALYSIS
topic CONSCIOUSNESS
EEG
EPILEPSY
PRINCIPAL COMPONENT ANALYSIS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity.
Fil: Maidana Capitán, Melisa Beatriz. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Cámpora, Nuria Elide. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; Argentina
Fil: Sigvard, Claudio Sebastián. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Kochen, Sara Silvia. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; Argentina
Fil: Samengo, Ines. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
description The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/126839
Maidana Capitán, Melisa Beatriz; Cámpora, Nuria Elide; Sigvard, Claudio Sebastián; Kochen, Sara Silvia; Samengo, Ines; Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings; Springer; Biological Cybernetics.; 114; 4-5; 10-2020; 461-471
0340-1200
CONICET Digital
CONICET
url http://hdl.handle.net/11336/126839
identifier_str_mv Maidana Capitán, Melisa Beatriz; Cámpora, Nuria Elide; Sigvard, Claudio Sebastián; Kochen, Sara Silvia; Samengo, Ines; Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings; Springer; Biological Cybernetics.; 114; 4-5; 10-2020; 461-471
0340-1200
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00422-020-00840-y
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00422-020-00840-y
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1902.11236v2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613367321329664
score 13.070432