Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings
- Autores
- Maidana Capitán, Melisa Beatriz; Cámpora, Nuria Elide; Sigvard, Claudio Sebastián; Kochen, Sara Silvia; Samengo, Ines
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity.
Fil: Maidana Capitán, Melisa Beatriz. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Cámpora, Nuria Elide. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; Argentina
Fil: Sigvard, Claudio Sebastián. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Kochen, Sara Silvia. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; Argentina
Fil: Samengo, Ines. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina - Materia
-
CONSCIOUSNESS
EEG
EPILEPSY
PRINCIPAL COMPONENT ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/126839
Ver los metadatos del registro completo
id |
CONICETDig_2334c45249bf9bf60c1c723a76cff676 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/126839 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordingsMaidana Capitán, Melisa BeatrizCámpora, Nuria ElideSigvard, Claudio SebastiánKochen, Sara SilviaSamengo, InesCONSCIOUSNESSEEGEPILEPSYPRINCIPAL COMPONENT ANALYSIShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity.Fil: Maidana Capitán, Melisa Beatriz. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Cámpora, Nuria Elide. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; ArgentinaFil: Sigvard, Claudio Sebastián. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Kochen, Sara Silvia. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; ArgentinaFil: Samengo, Ines. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaSpringer2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/126839Maidana Capitán, Melisa Beatriz; Cámpora, Nuria Elide; Sigvard, Claudio Sebastián; Kochen, Sara Silvia; Samengo, Ines; Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings; Springer; Biological Cybernetics.; 114; 4-5; 10-2020; 461-4710340-1200CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00422-020-00840-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00422-020-00840-yinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1902.11236v2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:26Zoai:ri.conicet.gov.ar:11336/126839instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:26.786CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings |
title |
Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings |
spellingShingle |
Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings Maidana Capitán, Melisa Beatriz CONSCIOUSNESS EEG EPILEPSY PRINCIPAL COMPONENT ANALYSIS |
title_short |
Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings |
title_full |
Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings |
title_fullStr |
Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings |
title_full_unstemmed |
Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings |
title_sort |
Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings |
dc.creator.none.fl_str_mv |
Maidana Capitán, Melisa Beatriz Cámpora, Nuria Elide Sigvard, Claudio Sebastián Kochen, Sara Silvia Samengo, Ines |
author |
Maidana Capitán, Melisa Beatriz |
author_facet |
Maidana Capitán, Melisa Beatriz Cámpora, Nuria Elide Sigvard, Claudio Sebastián Kochen, Sara Silvia Samengo, Ines |
author_role |
author |
author2 |
Cámpora, Nuria Elide Sigvard, Claudio Sebastián Kochen, Sara Silvia Samengo, Ines |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
CONSCIOUSNESS EEG EPILEPSY PRINCIPAL COMPONENT ANALYSIS |
topic |
CONSCIOUSNESS EEG EPILEPSY PRINCIPAL COMPONENT ANALYSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity. Fil: Maidana Capitán, Melisa Beatriz. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Cámpora, Nuria Elide. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; Argentina Fil: Sigvard, Claudio Sebastián. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Kochen, Sara Silvia. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. Néstor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; Argentina Fil: Samengo, Ines. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina |
description |
The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/126839 Maidana Capitán, Melisa Beatriz; Cámpora, Nuria Elide; Sigvard, Claudio Sebastián; Kochen, Sara Silvia; Samengo, Ines; Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings; Springer; Biological Cybernetics.; 114; 4-5; 10-2020; 461-471 0340-1200 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/126839 |
identifier_str_mv |
Maidana Capitán, Melisa Beatriz; Cámpora, Nuria Elide; Sigvard, Claudio Sebastián; Kochen, Sara Silvia; Samengo, Ines; Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings; Springer; Biological Cybernetics.; 114; 4-5; 10-2020; 461-471 0340-1200 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00422-020-00840-y info:eu-repo/semantics/altIdentifier/doi/10.1007/s00422-020-00840-y info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1902.11236v2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613367321329664 |
score |
13.070432 |