Automatic detection of epileptic seizures in long-term EEG records
- Autores
- Garces Correa, Maria Agustina; Orosco, Lorena Liliana; Diez, Pablo Federico; Laciar Leber, Eric
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Epilepsy is a neurological disorder which affects nearly 1.5% of the world's total population. Trained physicians and neurologists visually scan the long-term electroencephalographic (EEG) records to identify epileptic seizures. It generally requires many hours to interpret the data. Therefore, tools for quick detection of seizures in long-term EEG records are very useful. This study proposes an algorithm to help detect seizures in long-term iEEG based on low computational costs methods using Spectral Power and Wavelet analysis. The detector was tested on 21 invasive intracranial EEG (iEEG) records. A sensitivity of 85.39% was achieved. The results indicate that the proposed method detects epileptic seizures in long-term iEEG records successfully. Moreover, the algorithm does not require long processing time due to its simplicity. This feature will allow significant time reduction of the visual inspection of iEEG records performed by the specialists.
Fil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Orosco, Lorena Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina
Fil: Diez, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina
Fil: Laciar Leber, Eric. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina - Materia
-
Eeg Frequency Bands
Epilepsy
Intracranial Eeg Records (Ieeg)
Power Spectrum
Wavelet Decomposition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/38013
Ver los metadatos del registro completo
id |
CONICETDig_4b0729bf3a524fb4b6506f9c152ca650 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/38013 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automatic detection of epileptic seizures in long-term EEG recordsGarces Correa, Maria AgustinaOrosco, Lorena LilianaDiez, Pablo FedericoLaciar Leber, EricEeg Frequency BandsEpilepsyIntracranial Eeg Records (Ieeg)Power SpectrumWavelet Decompositionhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Epilepsy is a neurological disorder which affects nearly 1.5% of the world's total population. Trained physicians and neurologists visually scan the long-term electroencephalographic (EEG) records to identify epileptic seizures. It generally requires many hours to interpret the data. Therefore, tools for quick detection of seizures in long-term EEG records are very useful. This study proposes an algorithm to help detect seizures in long-term iEEG based on low computational costs methods using Spectral Power and Wavelet analysis. The detector was tested on 21 invasive intracranial EEG (iEEG) records. A sensitivity of 85.39% was achieved. The results indicate that the proposed method detects epileptic seizures in long-term iEEG records successfully. Moreover, the algorithm does not require long processing time due to its simplicity. This feature will allow significant time reduction of the visual inspection of iEEG records performed by the specialists.Fil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Orosco, Lorena Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; ArgentinaFil: Diez, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; ArgentinaFil: Laciar Leber, Eric. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; ArgentinaPergamon-Elsevier Science Ltd2015-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38013Garces Correa, Maria Agustina; Orosco, Lorena Liliana; Diez, Pablo Federico; Laciar Leber, Eric; Automatic detection of epileptic seizures in long-term EEG records; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 57; 2-2015; 66-730010-4825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compbiomed.2014.11.013info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S001048251400331Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:29Zoai:ri.conicet.gov.ar:11336/38013instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:29.426CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automatic detection of epileptic seizures in long-term EEG records |
title |
Automatic detection of epileptic seizures in long-term EEG records |
spellingShingle |
Automatic detection of epileptic seizures in long-term EEG records Garces Correa, Maria Agustina Eeg Frequency Bands Epilepsy Intracranial Eeg Records (Ieeg) Power Spectrum Wavelet Decomposition |
title_short |
Automatic detection of epileptic seizures in long-term EEG records |
title_full |
Automatic detection of epileptic seizures in long-term EEG records |
title_fullStr |
Automatic detection of epileptic seizures in long-term EEG records |
title_full_unstemmed |
Automatic detection of epileptic seizures in long-term EEG records |
title_sort |
Automatic detection of epileptic seizures in long-term EEG records |
dc.creator.none.fl_str_mv |
Garces Correa, Maria Agustina Orosco, Lorena Liliana Diez, Pablo Federico Laciar Leber, Eric |
author |
Garces Correa, Maria Agustina |
author_facet |
Garces Correa, Maria Agustina Orosco, Lorena Liliana Diez, Pablo Federico Laciar Leber, Eric |
author_role |
author |
author2 |
Orosco, Lorena Liliana Diez, Pablo Federico Laciar Leber, Eric |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Eeg Frequency Bands Epilepsy Intracranial Eeg Records (Ieeg) Power Spectrum Wavelet Decomposition |
topic |
Eeg Frequency Bands Epilepsy Intracranial Eeg Records (Ieeg) Power Spectrum Wavelet Decomposition |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Epilepsy is a neurological disorder which affects nearly 1.5% of the world's total population. Trained physicians and neurologists visually scan the long-term electroencephalographic (EEG) records to identify epileptic seizures. It generally requires many hours to interpret the data. Therefore, tools for quick detection of seizures in long-term EEG records are very useful. This study proposes an algorithm to help detect seizures in long-term iEEG based on low computational costs methods using Spectral Power and Wavelet analysis. The detector was tested on 21 invasive intracranial EEG (iEEG) records. A sensitivity of 85.39% was achieved. The results indicate that the proposed method detects epileptic seizures in long-term iEEG records successfully. Moreover, the algorithm does not require long processing time due to its simplicity. This feature will allow significant time reduction of the visual inspection of iEEG records performed by the specialists. Fil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Orosco, Lorena Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina Fil: Diez, Pablo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina Fil: Laciar Leber, Eric. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina |
description |
Epilepsy is a neurological disorder which affects nearly 1.5% of the world's total population. Trained physicians and neurologists visually scan the long-term electroencephalographic (EEG) records to identify epileptic seizures. It generally requires many hours to interpret the data. Therefore, tools for quick detection of seizures in long-term EEG records are very useful. This study proposes an algorithm to help detect seizures in long-term iEEG based on low computational costs methods using Spectral Power and Wavelet analysis. The detector was tested on 21 invasive intracranial EEG (iEEG) records. A sensitivity of 85.39% was achieved. The results indicate that the proposed method detects epileptic seizures in long-term iEEG records successfully. Moreover, the algorithm does not require long processing time due to its simplicity. This feature will allow significant time reduction of the visual inspection of iEEG records performed by the specialists. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/38013 Garces Correa, Maria Agustina; Orosco, Lorena Liliana; Diez, Pablo Federico; Laciar Leber, Eric; Automatic detection of epileptic seizures in long-term EEG records; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 57; 2-2015; 66-73 0010-4825 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/38013 |
identifier_str_mv |
Garces Correa, Maria Agustina; Orosco, Lorena Liliana; Diez, Pablo Federico; Laciar Leber, Eric; Automatic detection of epileptic seizures in long-term EEG records; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 57; 2-2015; 66-73 0010-4825 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compbiomed.2014.11.013 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S001048251400331X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614420291911680 |
score |
13.070432 |