On fractional operators with more than one singularity

Autores
Riveros, Maria Silvina; Vidal, Raúl Emilio
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let 0 ≤ α < n, m ∈ N and let Tα,m be an integral operator given by a kernel of the form K(x, y) = k1(x − A1y)k2(x − A2y) . . . km(x − Amy), where Ai are invertible matrices and each ki satisfies a fractional size and a generalized fractional H¨ormander condition that depends on α. In this survey, written in honour to Eleonor Harboure, we collect several results about boundedness in different spaces of the operator Tα,m, obtained along the last 35 years by several members of the Analysis Group of FAMAF, UNC.
Fil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Vidal, Raúl Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
Maximal operators
Calderón-Zygmund Operators
Fractional Operators
Generalized Hörmander's condition
Weighted innequalities
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/231972

id CONICETDig_d28f88f5bb5dc1045d9f0b40c47ea5f6
oai_identifier_str oai:ri.conicet.gov.ar:11336/231972
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On fractional operators with more than one singularityRiveros, Maria SilvinaVidal, Raúl EmilioMaximal operatorsCalderón-Zygmund OperatorsFractional OperatorsGeneralized Hörmander's conditionWeighted innequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let 0 ≤ α < n, m ∈ N and let Tα,m be an integral operator given by a kernel of the form K(x, y) = k1(x − A1y)k2(x − A2y) . . . km(x − Amy), where Ai are invertible matrices and each ki satisfies a fractional size and a generalized fractional H¨ormander condition that depends on α. In this survey, written in honour to Eleonor Harboure, we collect several results about boundedness in different spaces of the operator Tα,m, obtained along the last 35 years by several members of the Analysis Group of FAMAF, UNC.Fil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Vidal, Raúl Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaUnión Matemática Argentina2023-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231972Riveros, Maria Silvina; Vidal, Raúl Emilio; On fractional operators with more than one singularity; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 9-2023; 281-2950041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v66n1a15info:eu-repo/semantics/altIdentifier/url/https://ojs.uns.edu.ar/revuma/article/view/4364info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.4364info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:35:12Zoai:ri.conicet.gov.ar:11336/231972instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:35:12.45CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On fractional operators with more than one singularity
title On fractional operators with more than one singularity
spellingShingle On fractional operators with more than one singularity
Riveros, Maria Silvina
Maximal operators
Calderón-Zygmund Operators
Fractional Operators
Generalized Hörmander's condition
Weighted innequalities
title_short On fractional operators with more than one singularity
title_full On fractional operators with more than one singularity
title_fullStr On fractional operators with more than one singularity
title_full_unstemmed On fractional operators with more than one singularity
title_sort On fractional operators with more than one singularity
dc.creator.none.fl_str_mv Riveros, Maria Silvina
Vidal, Raúl Emilio
author Riveros, Maria Silvina
author_facet Riveros, Maria Silvina
Vidal, Raúl Emilio
author_role author
author2 Vidal, Raúl Emilio
author2_role author
dc.subject.none.fl_str_mv Maximal operators
Calderón-Zygmund Operators
Fractional Operators
Generalized Hörmander's condition
Weighted innequalities
topic Maximal operators
Calderón-Zygmund Operators
Fractional Operators
Generalized Hörmander's condition
Weighted innequalities
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let 0 ≤ α < n, m ∈ N and let Tα,m be an integral operator given by a kernel of the form K(x, y) = k1(x − A1y)k2(x − A2y) . . . km(x − Amy), where Ai are invertible matrices and each ki satisfies a fractional size and a generalized fractional H¨ormander condition that depends on α. In this survey, written in honour to Eleonor Harboure, we collect several results about boundedness in different spaces of the operator Tα,m, obtained along the last 35 years by several members of the Analysis Group of FAMAF, UNC.
Fil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Vidal, Raúl Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description Let 0 ≤ α < n, m ∈ N and let Tα,m be an integral operator given by a kernel of the form K(x, y) = k1(x − A1y)k2(x − A2y) . . . km(x − Amy), where Ai are invertible matrices and each ki satisfies a fractional size and a generalized fractional H¨ormander condition that depends on α. In this survey, written in honour to Eleonor Harboure, we collect several results about boundedness in different spaces of the operator Tα,m, obtained along the last 35 years by several members of the Analysis Group of FAMAF, UNC.
publishDate 2023
dc.date.none.fl_str_mv 2023-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/231972
Riveros, Maria Silvina; Vidal, Raúl Emilio; On fractional operators with more than one singularity; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 9-2023; 281-295
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/231972
identifier_str_mv Riveros, Maria Silvina; Vidal, Raúl Emilio; On fractional operators with more than one singularity; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 9-2023; 281-295
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v66n1a15
info:eu-repo/semantics/altIdentifier/url/https://ojs.uns.edu.ar/revuma/article/view/4364
info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.4364
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614369833385984
score 13.070432