On fractional operators with more than one singularity
- Autores
- Riveros, Maria Silvina; Vidal, Raúl Emilio
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let 0 ≤ α < n, m ∈ N and let Tα,m be an integral operator given by a kernel of the form K(x, y) = k1(x − A1y)k2(x − A2y) . . . km(x − Amy), where Ai are invertible matrices and each ki satisfies a fractional size and a generalized fractional H¨ormander condition that depends on α. In this survey, written in honour to Eleonor Harboure, we collect several results about boundedness in different spaces of the operator Tα,m, obtained along the last 35 years by several members of the Analysis Group of FAMAF, UNC.
Fil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Vidal, Raúl Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Maximal operators
Calderón-Zygmund Operators
Fractional Operators
Generalized Hörmander's condition
Weighted innequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/231972
Ver los metadatos del registro completo
id |
CONICETDig_d28f88f5bb5dc1045d9f0b40c47ea5f6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/231972 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On fractional operators with more than one singularityRiveros, Maria SilvinaVidal, Raúl EmilioMaximal operatorsCalderón-Zygmund OperatorsFractional OperatorsGeneralized Hörmander's conditionWeighted innequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let 0 ≤ α < n, m ∈ N and let Tα,m be an integral operator given by a kernel of the form K(x, y) = k1(x − A1y)k2(x − A2y) . . . km(x − Amy), where Ai are invertible matrices and each ki satisfies a fractional size and a generalized fractional H¨ormander condition that depends on α. In this survey, written in honour to Eleonor Harboure, we collect several results about boundedness in different spaces of the operator Tα,m, obtained along the last 35 years by several members of the Analysis Group of FAMAF, UNC.Fil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Vidal, Raúl Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaUnión Matemática Argentina2023-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231972Riveros, Maria Silvina; Vidal, Raúl Emilio; On fractional operators with more than one singularity; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 9-2023; 281-2950041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v66n1a15info:eu-repo/semantics/altIdentifier/url/https://ojs.uns.edu.ar/revuma/article/view/4364info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.4364info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:35:12Zoai:ri.conicet.gov.ar:11336/231972instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:35:12.45CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On fractional operators with more than one singularity |
title |
On fractional operators with more than one singularity |
spellingShingle |
On fractional operators with more than one singularity Riveros, Maria Silvina Maximal operators Calderón-Zygmund Operators Fractional Operators Generalized Hörmander's condition Weighted innequalities |
title_short |
On fractional operators with more than one singularity |
title_full |
On fractional operators with more than one singularity |
title_fullStr |
On fractional operators with more than one singularity |
title_full_unstemmed |
On fractional operators with more than one singularity |
title_sort |
On fractional operators with more than one singularity |
dc.creator.none.fl_str_mv |
Riveros, Maria Silvina Vidal, Raúl Emilio |
author |
Riveros, Maria Silvina |
author_facet |
Riveros, Maria Silvina Vidal, Raúl Emilio |
author_role |
author |
author2 |
Vidal, Raúl Emilio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Maximal operators Calderón-Zygmund Operators Fractional Operators Generalized Hörmander's condition Weighted innequalities |
topic |
Maximal operators Calderón-Zygmund Operators Fractional Operators Generalized Hörmander's condition Weighted innequalities |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let 0 ≤ α < n, m ∈ N and let Tα,m be an integral operator given by a kernel of the form K(x, y) = k1(x − A1y)k2(x − A2y) . . . km(x − Amy), where Ai are invertible matrices and each ki satisfies a fractional size and a generalized fractional H¨ormander condition that depends on α. In this survey, written in honour to Eleonor Harboure, we collect several results about boundedness in different spaces of the operator Tα,m, obtained along the last 35 years by several members of the Analysis Group of FAMAF, UNC. Fil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Vidal, Raúl Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
Let 0 ≤ α < n, m ∈ N and let Tα,m be an integral operator given by a kernel of the form K(x, y) = k1(x − A1y)k2(x − A2y) . . . km(x − Amy), where Ai are invertible matrices and each ki satisfies a fractional size and a generalized fractional H¨ormander condition that depends on α. In this survey, written in honour to Eleonor Harboure, we collect several results about boundedness in different spaces of the operator Tα,m, obtained along the last 35 years by several members of the Analysis Group of FAMAF, UNC. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/231972 Riveros, Maria Silvina; Vidal, Raúl Emilio; On fractional operators with more than one singularity; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 9-2023; 281-295 0041-6932 1669-9637 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/231972 |
identifier_str_mv |
Riveros, Maria Silvina; Vidal, Raúl Emilio; On fractional operators with more than one singularity; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 9-2023; 281-295 0041-6932 1669-9637 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v66n1a15 info:eu-repo/semantics/altIdentifier/url/https://ojs.uns.edu.ar/revuma/article/view/4364 info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.4364 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614369833385984 |
score |
13.070432 |