On the composition of the integral and derivative operators of functional order

Autores
Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we show that the composition of the integral and derivative operators of order phi, T_phi = D_phi◦I_phi, is a singular integral operator.This result in addition with the results obtained in [HV2] of boundedness of I_phi and D_phi or the T1-theorems proved in [HV1] yield the fact that T_phi is a Calderón-Zygmund operator bounded on the generalized Besov and Triebel-Lizorkin spaces of functional order.
Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
FRACTIONAL INTEGRAL OPERATORS
FRACTIONAL DEIVATIVE OPERATORS
BESOV AND TRIEBEL-LIZORKING SPACES
CALDERÓN_ZYGMUND OPERATORS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100580

id CONICETDig_9fdcf7c1ad9176d3ce487bc62eda5892
oai_identifier_str oai:ri.conicet.gov.ar:11336/100580
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the composition of the integral and derivative operators of functional orderHartzstein, Silvia InésViviani, Beatriz EleonoraFRACTIONAL INTEGRAL OPERATORSFRACTIONAL DEIVATIVE OPERATORSBESOV AND TRIEBEL-LIZORKING SPACESCALDERÓN_ZYGMUND OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we show that the composition of the integral and derivative operators of order phi, T_phi = D_phi◦I_phi, is a singular integral operator.This result in addition with the results obtained in [HV2] of boundedness of I_phi and D_phi or the T1-theorems proved in [HV1] yield the fact that T_phi is a Calderón-Zygmund operator bounded on the generalized Besov and Triebel-Lizorkin spaces of functional order.Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaUniversitatis Carolinae2003-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100580Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; On the composition of the integral and derivative operators of functional order; Universitatis Carolinae; Commentationes Mathematicae; 3-2003; 99-1200010-2628CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:51Zoai:ri.conicet.gov.ar:11336/100580instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:51.543CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the composition of the integral and derivative operators of functional order
title On the composition of the integral and derivative operators of functional order
spellingShingle On the composition of the integral and derivative operators of functional order
Hartzstein, Silvia Inés
FRACTIONAL INTEGRAL OPERATORS
FRACTIONAL DEIVATIVE OPERATORS
BESOV AND TRIEBEL-LIZORKING SPACES
CALDERÓN_ZYGMUND OPERATORS
title_short On the composition of the integral and derivative operators of functional order
title_full On the composition of the integral and derivative operators of functional order
title_fullStr On the composition of the integral and derivative operators of functional order
title_full_unstemmed On the composition of the integral and derivative operators of functional order
title_sort On the composition of the integral and derivative operators of functional order
dc.creator.none.fl_str_mv Hartzstein, Silvia Inés
Viviani, Beatriz Eleonora
author Hartzstein, Silvia Inés
author_facet Hartzstein, Silvia Inés
Viviani, Beatriz Eleonora
author_role author
author2 Viviani, Beatriz Eleonora
author2_role author
dc.subject.none.fl_str_mv FRACTIONAL INTEGRAL OPERATORS
FRACTIONAL DEIVATIVE OPERATORS
BESOV AND TRIEBEL-LIZORKING SPACES
CALDERÓN_ZYGMUND OPERATORS
topic FRACTIONAL INTEGRAL OPERATORS
FRACTIONAL DEIVATIVE OPERATORS
BESOV AND TRIEBEL-LIZORKING SPACES
CALDERÓN_ZYGMUND OPERATORS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we show that the composition of the integral and derivative operators of order phi, T_phi = D_phi◦I_phi, is a singular integral operator.This result in addition with the results obtained in [HV2] of boundedness of I_phi and D_phi or the T1-theorems proved in [HV1] yield the fact that T_phi is a Calderón-Zygmund operator bounded on the generalized Besov and Triebel-Lizorkin spaces of functional order.
Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description In this work we show that the composition of the integral and derivative operators of order phi, T_phi = D_phi◦I_phi, is a singular integral operator.This result in addition with the results obtained in [HV2] of boundedness of I_phi and D_phi or the T1-theorems proved in [HV1] yield the fact that T_phi is a Calderón-Zygmund operator bounded on the generalized Besov and Triebel-Lizorkin spaces of functional order.
publishDate 2003
dc.date.none.fl_str_mv 2003-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100580
Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; On the composition of the integral and derivative operators of functional order; Universitatis Carolinae; Commentationes Mathematicae; 3-2003; 99-120
0010-2628
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100580
identifier_str_mv Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; On the composition of the integral and derivative operators of functional order; Universitatis Carolinae; Commentationes Mathematicae; 3-2003; 99-120
0010-2628
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universitatis Carolinae
publisher.none.fl_str_mv Universitatis Carolinae
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614412684492800
score 13.070432