On the composition of the integral and derivative operators of functional order
- Autores
- Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we show that the composition of the integral and derivative operators of order phi, T_phi = D_phi◦I_phi, is a singular integral operator.This result in addition with the results obtained in [HV2] of boundedness of I_phi and D_phi or the T1-theorems proved in [HV1] yield the fact that T_phi is a Calderón-Zygmund operator bounded on the generalized Besov and Triebel-Lizorkin spaces of functional order.
Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
FRACTIONAL INTEGRAL OPERATORS
FRACTIONAL DEIVATIVE OPERATORS
BESOV AND TRIEBEL-LIZORKING SPACES
CALDERÓN_ZYGMUND OPERATORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100580
Ver los metadatos del registro completo
id |
CONICETDig_9fdcf7c1ad9176d3ce487bc62eda5892 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100580 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the composition of the integral and derivative operators of functional orderHartzstein, Silvia InésViviani, Beatriz EleonoraFRACTIONAL INTEGRAL OPERATORSFRACTIONAL DEIVATIVE OPERATORSBESOV AND TRIEBEL-LIZORKING SPACESCALDERÓN_ZYGMUND OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we show that the composition of the integral and derivative operators of order phi, T_phi = D_phi◦I_phi, is a singular integral operator.This result in addition with the results obtained in [HV2] of boundedness of I_phi and D_phi or the T1-theorems proved in [HV1] yield the fact that T_phi is a Calderón-Zygmund operator bounded on the generalized Besov and Triebel-Lizorkin spaces of functional order.Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaUniversitatis Carolinae2003-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100580Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; On the composition of the integral and derivative operators of functional order; Universitatis Carolinae; Commentationes Mathematicae; 3-2003; 99-1200010-2628CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:51Zoai:ri.conicet.gov.ar:11336/100580instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:51.543CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the composition of the integral and derivative operators of functional order |
title |
On the composition of the integral and derivative operators of functional order |
spellingShingle |
On the composition of the integral and derivative operators of functional order Hartzstein, Silvia Inés FRACTIONAL INTEGRAL OPERATORS FRACTIONAL DEIVATIVE OPERATORS BESOV AND TRIEBEL-LIZORKING SPACES CALDERÓN_ZYGMUND OPERATORS |
title_short |
On the composition of the integral and derivative operators of functional order |
title_full |
On the composition of the integral and derivative operators of functional order |
title_fullStr |
On the composition of the integral and derivative operators of functional order |
title_full_unstemmed |
On the composition of the integral and derivative operators of functional order |
title_sort |
On the composition of the integral and derivative operators of functional order |
dc.creator.none.fl_str_mv |
Hartzstein, Silvia Inés Viviani, Beatriz Eleonora |
author |
Hartzstein, Silvia Inés |
author_facet |
Hartzstein, Silvia Inés Viviani, Beatriz Eleonora |
author_role |
author |
author2 |
Viviani, Beatriz Eleonora |
author2_role |
author |
dc.subject.none.fl_str_mv |
FRACTIONAL INTEGRAL OPERATORS FRACTIONAL DEIVATIVE OPERATORS BESOV AND TRIEBEL-LIZORKING SPACES CALDERÓN_ZYGMUND OPERATORS |
topic |
FRACTIONAL INTEGRAL OPERATORS FRACTIONAL DEIVATIVE OPERATORS BESOV AND TRIEBEL-LIZORKING SPACES CALDERÓN_ZYGMUND OPERATORS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we show that the composition of the integral and derivative operators of order phi, T_phi = D_phi◦I_phi, is a singular integral operator.This result in addition with the results obtained in [HV2] of boundedness of I_phi and D_phi or the T1-theorems proved in [HV1] yield the fact that T_phi is a Calderón-Zygmund operator bounded on the generalized Besov and Triebel-Lizorkin spaces of functional order. Fil: Hartzstein, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
In this work we show that the composition of the integral and derivative operators of order phi, T_phi = D_phi◦I_phi, is a singular integral operator.This result in addition with the results obtained in [HV2] of boundedness of I_phi and D_phi or the T1-theorems proved in [HV1] yield the fact that T_phi is a Calderón-Zygmund operator bounded on the generalized Besov and Triebel-Lizorkin spaces of functional order. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100580 Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; On the composition of the integral and derivative operators of functional order; Universitatis Carolinae; Commentationes Mathematicae; 3-2003; 99-120 0010-2628 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100580 |
identifier_str_mv |
Hartzstein, Silvia Inés; Viviani, Beatriz Eleonora; On the composition of the integral and derivative operators of functional order; Universitatis Carolinae; Commentationes Mathematicae; 3-2003; 99-120 0010-2628 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universitatis Carolinae |
publisher.none.fl_str_mv |
Universitatis Carolinae |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614412684492800 |
score |
13.070432 |