Sylvester's double sums: An inductive proof of the general case
- Autores
- Krick, Teresa Elena Genoveva; Szanto, Agnes
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In 1853, Sylvester introduced a family of double sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. In 2009, in a joint work with C. D’Andrea and H. Hong we gave the complete description of all the members of the family as expressions in the coefficients of these polynomials. More recently, M.-F. Roy and A. Szpirglas presented a new and natural inductive proof for the cases considered by Sylvester. Here we show how induction also allows to obtain the full description of Sylvester’s double-sums.
Fil: Krick, Teresa Elena Genoveva. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Szanto, Agnes. North Carolina State University; Estados Unidos - Materia
-
Subresultants
Double-Sum Formula
Induction - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14934
Ver los metadatos del registro completo
id |
CONICETDig_5cec3af0b1c5af057f0ec3ac7fbf3f5b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14934 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sylvester's double sums: An inductive proof of the general caseKrick, Teresa Elena GenovevaSzanto, AgnesSubresultantsDouble-Sum FormulaInductionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In 1853, Sylvester introduced a family of double sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. In 2009, in a joint work with C. D’Andrea and H. Hong we gave the complete description of all the members of the family as expressions in the coefficients of these polynomials. More recently, M.-F. Roy and A. Szpirglas presented a new and natural inductive proof for the cases considered by Sylvester. Here we show how induction also allows to obtain the full description of Sylvester’s double-sums.Fil: Krick, Teresa Elena Genoveva. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Szanto, Agnes. North Carolina State University; Estados UnidosElsevier2012-01-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14934Krick, Teresa Elena Genoveva; Szanto, Agnes; Sylvester's double sums: An inductive proof of the general case; Elsevier; Journal Of Symbolic Computation; 47; 8; 30-1-2012; 942-9530747-7171enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0747717112000041info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2012.01.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:16Zoai:ri.conicet.gov.ar:11336/14934instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:16.607CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sylvester's double sums: An inductive proof of the general case |
title |
Sylvester's double sums: An inductive proof of the general case |
spellingShingle |
Sylvester's double sums: An inductive proof of the general case Krick, Teresa Elena Genoveva Subresultants Double-Sum Formula Induction |
title_short |
Sylvester's double sums: An inductive proof of the general case |
title_full |
Sylvester's double sums: An inductive proof of the general case |
title_fullStr |
Sylvester's double sums: An inductive proof of the general case |
title_full_unstemmed |
Sylvester's double sums: An inductive proof of the general case |
title_sort |
Sylvester's double sums: An inductive proof of the general case |
dc.creator.none.fl_str_mv |
Krick, Teresa Elena Genoveva Szanto, Agnes |
author |
Krick, Teresa Elena Genoveva |
author_facet |
Krick, Teresa Elena Genoveva Szanto, Agnes |
author_role |
author |
author2 |
Szanto, Agnes |
author2_role |
author |
dc.subject.none.fl_str_mv |
Subresultants Double-Sum Formula Induction |
topic |
Subresultants Double-Sum Formula Induction |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In 1853, Sylvester introduced a family of double sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. In 2009, in a joint work with C. D’Andrea and H. Hong we gave the complete description of all the members of the family as expressions in the coefficients of these polynomials. More recently, M.-F. Roy and A. Szpirglas presented a new and natural inductive proof for the cases considered by Sylvester. Here we show how induction also allows to obtain the full description of Sylvester’s double-sums. Fil: Krick, Teresa Elena Genoveva. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Szanto, Agnes. North Carolina State University; Estados Unidos |
description |
In 1853, Sylvester introduced a family of double sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. In 2009, in a joint work with C. D’Andrea and H. Hong we gave the complete description of all the members of the family as expressions in the coefficients of these polynomials. More recently, M.-F. Roy and A. Szpirglas presented a new and natural inductive proof for the cases considered by Sylvester. Here we show how induction also allows to obtain the full description of Sylvester’s double-sums. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01-30 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14934 Krick, Teresa Elena Genoveva; Szanto, Agnes; Sylvester's double sums: An inductive proof of the general case; Elsevier; Journal Of Symbolic Computation; 47; 8; 30-1-2012; 942-953 0747-7171 |
url |
http://hdl.handle.net/11336/14934 |
identifier_str_mv |
Krick, Teresa Elena Genoveva; Szanto, Agnes; Sylvester's double sums: An inductive proof of the general case; Elsevier; Journal Of Symbolic Computation; 47; 8; 30-1-2012; 942-953 0747-7171 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0747717112000041 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2012.01.003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269334393585664 |
score |
13.13397 |