Sylvester's double sums: The general case

Autores
D'Andrea, C.; Hong, H.; Krick, T.; Szanto, A.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In 1853 Sylvester introduced a family of double-sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. A question naturally arises: What are the other members of the family? This paper provides a complete answer to this question. The technique that we developed to answer the question turns out to be general enough to characterize all members of the family, providing a uniform method. © 2009 Elsevier Ltd. All rights reserved.
Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Symb. Comput. 2009;44(9):1164-1175
Materia
Double sums
Subresultants
Vandermonde determinants
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_07477171_v44_n9_p1164_DAndrea

id BDUBAFCEN_ef790b3842a7de3b6a725a444f75a362
oai_identifier_str paperaa:paper_07477171_v44_n9_p1164_DAndrea
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Sylvester's double sums: The general caseD'Andrea, C.Hong, H.Krick, T.Szanto, A.Double sumsSubresultantsVandermonde determinantsIn 1853 Sylvester introduced a family of double-sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. A question naturally arises: What are the other members of the family? This paper provides a complete answer to this question. The technique that we developed to answer the question turns out to be general enough to characterize all members of the family, providing a uniform method. © 2009 Elsevier Ltd. All rights reserved.Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_07477171_v44_n9_p1164_DAndreaJ. Symb. Comput. 2009;44(9):1164-1175reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:47Zpaperaa:paper_07477171_v44_n9_p1164_DAndreaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:48.959Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Sylvester's double sums: The general case
title Sylvester's double sums: The general case
spellingShingle Sylvester's double sums: The general case
D'Andrea, C.
Double sums
Subresultants
Vandermonde determinants
title_short Sylvester's double sums: The general case
title_full Sylvester's double sums: The general case
title_fullStr Sylvester's double sums: The general case
title_full_unstemmed Sylvester's double sums: The general case
title_sort Sylvester's double sums: The general case
dc.creator.none.fl_str_mv D'Andrea, C.
Hong, H.
Krick, T.
Szanto, A.
author D'Andrea, C.
author_facet D'Andrea, C.
Hong, H.
Krick, T.
Szanto, A.
author_role author
author2 Hong, H.
Krick, T.
Szanto, A.
author2_role author
author
author
dc.subject.none.fl_str_mv Double sums
Subresultants
Vandermonde determinants
topic Double sums
Subresultants
Vandermonde determinants
dc.description.none.fl_txt_mv In 1853 Sylvester introduced a family of double-sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. A question naturally arises: What are the other members of the family? This paper provides a complete answer to this question. The technique that we developed to answer the question turns out to be general enough to characterize all members of the family, providing a uniform method. © 2009 Elsevier Ltd. All rights reserved.
Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In 1853 Sylvester introduced a family of double-sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. A question naturally arises: What are the other members of the family? This paper provides a complete answer to this question. The technique that we developed to answer the question turns out to be general enough to characterize all members of the family, providing a uniform method. © 2009 Elsevier Ltd. All rights reserved.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_07477171_v44_n9_p1164_DAndrea
url http://hdl.handle.net/20.500.12110/paper_07477171_v44_n9_p1164_DAndrea
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Symb. Comput. 2009;44(9):1164-1175
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340707887480832
score 12.623145