Sylvester's double sums: An inductive proof of the general case

Autores
Krick, T.; Szanto, A.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In 1853, Sylvester introduced a family of double sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. In 2009, in a joint work with C. D'Andrea and H. Hong we gave the complete description of all the members of the family as expressions in the coefficients of these polynomials. More recently, M.-F. Roy and A.Szpirglas presented a new and natural inductive proof for the cases considered by Sylvester. Here we show how induction also allows to obtain the full description of Sylvester's double-sums. © 2012 Elsevier Ltd.
Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Symb. Comput. 2012;47(8):942-953
Materia
Subresultants
Sylvester's double sums
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_07477171_v47_n8_p942_Krick

id BDUBAFCEN_eb749268c69e13dfa0c51390d73dd6c1
oai_identifier_str paperaa:paper_07477171_v47_n8_p942_Krick
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Sylvester's double sums: An inductive proof of the general caseKrick, T.Szanto, A.SubresultantsSylvester's double sumsIn 1853, Sylvester introduced a family of double sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. In 2009, in a joint work with C. D'Andrea and H. Hong we gave the complete description of all the members of the family as expressions in the coefficients of these polynomials. More recently, M.-F. Roy and A.Szpirglas presented a new and natural inductive proof for the cases considered by Sylvester. Here we show how induction also allows to obtain the full description of Sylvester's double-sums. © 2012 Elsevier Ltd.Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_07477171_v47_n8_p942_KrickJ. Symb. Comput. 2012;47(8):942-953reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:47Zpaperaa:paper_07477171_v47_n8_p942_KrickInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:49.3Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Sylvester's double sums: An inductive proof of the general case
title Sylvester's double sums: An inductive proof of the general case
spellingShingle Sylvester's double sums: An inductive proof of the general case
Krick, T.
Subresultants
Sylvester's double sums
title_short Sylvester's double sums: An inductive proof of the general case
title_full Sylvester's double sums: An inductive proof of the general case
title_fullStr Sylvester's double sums: An inductive proof of the general case
title_full_unstemmed Sylvester's double sums: An inductive proof of the general case
title_sort Sylvester's double sums: An inductive proof of the general case
dc.creator.none.fl_str_mv Krick, T.
Szanto, A.
author Krick, T.
author_facet Krick, T.
Szanto, A.
author_role author
author2 Szanto, A.
author2_role author
dc.subject.none.fl_str_mv Subresultants
Sylvester's double sums
topic Subresultants
Sylvester's double sums
dc.description.none.fl_txt_mv In 1853, Sylvester introduced a family of double sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. In 2009, in a joint work with C. D'Andrea and H. Hong we gave the complete description of all the members of the family as expressions in the coefficients of these polynomials. More recently, M.-F. Roy and A.Szpirglas presented a new and natural inductive proof for the cases considered by Sylvester. Here we show how induction also allows to obtain the full description of Sylvester's double-sums. © 2012 Elsevier Ltd.
Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In 1853, Sylvester introduced a family of double sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. In 2009, in a joint work with C. D'Andrea and H. Hong we gave the complete description of all the members of the family as expressions in the coefficients of these polynomials. More recently, M.-F. Roy and A.Szpirglas presented a new and natural inductive proof for the cases considered by Sylvester. Here we show how induction also allows to obtain the full description of Sylvester's double-sums. © 2012 Elsevier Ltd.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_07477171_v47_n8_p942_Krick
url http://hdl.handle.net/20.500.12110/paper_07477171_v47_n8_p942_Krick
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Symb. Comput. 2012;47(8):942-953
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340707993387008
score 12.623145