Sylvester's double sums: An inductive proof of the general case
- Autores
- Krick, T.; Szanto, A.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In 1853, Sylvester introduced a family of double sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. In 2009, in a joint work with C. D'Andrea and H. Hong we gave the complete description of all the members of the family as expressions in the coefficients of these polynomials. More recently, M.-F. Roy and A.Szpirglas presented a new and natural inductive proof for the cases considered by Sylvester. Here we show how induction also allows to obtain the full description of Sylvester's double-sums. © 2012 Elsevier Ltd.
Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Symb. Comput. 2012;47(8):942-953
- Materia
-
Subresultants
Sylvester's double sums - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_07477171_v47_n8_p942_Krick
Ver los metadatos del registro completo
id |
BDUBAFCEN_eb749268c69e13dfa0c51390d73dd6c1 |
---|---|
oai_identifier_str |
paperaa:paper_07477171_v47_n8_p942_Krick |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Sylvester's double sums: An inductive proof of the general caseKrick, T.Szanto, A.SubresultantsSylvester's double sumsIn 1853, Sylvester introduced a family of double sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. In 2009, in a joint work with C. D'Andrea and H. Hong we gave the complete description of all the members of the family as expressions in the coefficients of these polynomials. More recently, M.-F. Roy and A.Szpirglas presented a new and natural inductive proof for the cases considered by Sylvester. Here we show how induction also allows to obtain the full description of Sylvester's double-sums. © 2012 Elsevier Ltd.Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_07477171_v47_n8_p942_KrickJ. Symb. Comput. 2012;47(8):942-953reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:47Zpaperaa:paper_07477171_v47_n8_p942_KrickInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:49.3Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Sylvester's double sums: An inductive proof of the general case |
title |
Sylvester's double sums: An inductive proof of the general case |
spellingShingle |
Sylvester's double sums: An inductive proof of the general case Krick, T. Subresultants Sylvester's double sums |
title_short |
Sylvester's double sums: An inductive proof of the general case |
title_full |
Sylvester's double sums: An inductive proof of the general case |
title_fullStr |
Sylvester's double sums: An inductive proof of the general case |
title_full_unstemmed |
Sylvester's double sums: An inductive proof of the general case |
title_sort |
Sylvester's double sums: An inductive proof of the general case |
dc.creator.none.fl_str_mv |
Krick, T. Szanto, A. |
author |
Krick, T. |
author_facet |
Krick, T. Szanto, A. |
author_role |
author |
author2 |
Szanto, A. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Subresultants Sylvester's double sums |
topic |
Subresultants Sylvester's double sums |
dc.description.none.fl_txt_mv |
In 1853, Sylvester introduced a family of double sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. In 2009, in a joint work with C. D'Andrea and H. Hong we gave the complete description of all the members of the family as expressions in the coefficients of these polynomials. More recently, M.-F. Roy and A.Szpirglas presented a new and natural inductive proof for the cases considered by Sylvester. Here we show how induction also allows to obtain the full description of Sylvester's double-sums. © 2012 Elsevier Ltd. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In 1853, Sylvester introduced a family of double sum expressions for two finite sets of indeterminates and showed that some members of the family are essentially the polynomial subresultants of the monic polynomials associated with these sets. In 2009, in a joint work with C. D'Andrea and H. Hong we gave the complete description of all the members of the family as expressions in the coefficients of these polynomials. More recently, M.-F. Roy and A.Szpirglas presented a new and natural inductive proof for the cases considered by Sylvester. Here we show how induction also allows to obtain the full description of Sylvester's double-sums. © 2012 Elsevier Ltd. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_07477171_v47_n8_p942_Krick |
url |
http://hdl.handle.net/20.500.12110/paper_07477171_v47_n8_p942_Krick |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Symb. Comput. 2012;47(8):942-953 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340707993387008 |
score |
12.623145 |