Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products

Autores
Carboni, Graciela; Guccione, Jorge Alberto; Guccione, Juan Jose; Valqui, Christian
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V . We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A# f V, in the sense of Brzezinski. We actually ´ work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E.
Fil: Carboni, Graciela. Universidad de Buenos Aires. Ciclo Básico Común; Argentina
Fil: Guccione, Jorge Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Guccione, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Valqui, Christian. Pontificia Universidad Catolica de Peru; Perú
Materia
Crossed Products
Hochschild (Co)Homology
Cyclic Homology
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18932

id CONICETDig_f7116506e007a8c321ca77b120deed9f
oai_identifier_str oai:ri.conicet.gov.ar:11336/18932
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed productsCarboni, GracielaGuccione, Jorge AlbertoGuccione, Juan JoseValqui, ChristianCrossed ProductsHochschild (Co)HomologyCyclic Homologyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V . We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A# f V, in the sense of Brzezinski. We actually ´ work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E.Fil: Carboni, Graciela. Universidad de Buenos Aires. Ciclo Básico Común; ArgentinaFil: Guccione, Jorge Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Guccione, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Valqui, Christian. Pontificia Universidad Catolica de Peru; PerúElsevier2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18932Carboni, Graciela; Guccione, Jorge Alberto; Guccione, Juan Jose; Valqui, Christian; Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products; Elsevier; Advances in Mathematics; 231; 6; 6-2012; 3502-35680001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0001870812003301info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2012.09.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:09:31Zoai:ri.conicet.gov.ar:11336/18932instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:09:31.626CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products
title Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products
spellingShingle Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products
Carboni, Graciela
Crossed Products
Hochschild (Co)Homology
Cyclic Homology
title_short Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products
title_full Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products
title_fullStr Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products
title_full_unstemmed Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products
title_sort Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products
dc.creator.none.fl_str_mv Carboni, Graciela
Guccione, Jorge Alberto
Guccione, Juan Jose
Valqui, Christian
author Carboni, Graciela
author_facet Carboni, Graciela
Guccione, Jorge Alberto
Guccione, Juan Jose
Valqui, Christian
author_role author
author2 Guccione, Jorge Alberto
Guccione, Juan Jose
Valqui, Christian
author2_role author
author
author
dc.subject.none.fl_str_mv Crossed Products
Hochschild (Co)Homology
Cyclic Homology
topic Crossed Products
Hochschild (Co)Homology
Cyclic Homology
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V . We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A# f V, in the sense of Brzezinski. We actually ´ work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E.
Fil: Carboni, Graciela. Universidad de Buenos Aires. Ciclo Básico Común; Argentina
Fil: Guccione, Jorge Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Guccione, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Valqui, Christian. Pontificia Universidad Catolica de Peru; Perú
description Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V . We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A# f V, in the sense of Brzezinski. We actually ´ work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E.
publishDate 2012
dc.date.none.fl_str_mv 2012-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18932
Carboni, Graciela; Guccione, Jorge Alberto; Guccione, Juan Jose; Valqui, Christian; Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products; Elsevier; Advances in Mathematics; 231; 6; 6-2012; 3502-3568
0001-8708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18932
identifier_str_mv Carboni, Graciela; Guccione, Jorge Alberto; Guccione, Juan Jose; Valqui, Christian; Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products; Elsevier; Advances in Mathematics; 231; 6; 6-2012; 3502-3568
0001-8708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0001870812003301
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2012.09.006
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083242688512000
score 13.22299