Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products
- Autores
- Carboni, Graciela; Guccione, Jorge Alberto; Guccione, Juan Jose; Valqui, Christian
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V . We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A# f V, in the sense of Brzezinski. We actually ´ work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E.
Fil: Carboni, Graciela. Universidad de Buenos Aires. Ciclo Básico Común; Argentina
Fil: Guccione, Jorge Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Guccione, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Valqui, Christian. Pontificia Universidad Catolica de Peru; Perú - Materia
-
Crossed Products
Hochschild (Co)Homology
Cyclic Homology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18932
Ver los metadatos del registro completo
| id |
CONICETDig_f7116506e007a8c321ca77b120deed9f |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18932 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed productsCarboni, GracielaGuccione, Jorge AlbertoGuccione, Juan JoseValqui, ChristianCrossed ProductsHochschild (Co)HomologyCyclic Homologyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V . We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A# f V, in the sense of Brzezinski. We actually ´ work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E.Fil: Carboni, Graciela. Universidad de Buenos Aires. Ciclo Básico Común; ArgentinaFil: Guccione, Jorge Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Guccione, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Valqui, Christian. Pontificia Universidad Catolica de Peru; PerúElsevier2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18932Carboni, Graciela; Guccione, Jorge Alberto; Guccione, Juan Jose; Valqui, Christian; Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products; Elsevier; Advances in Mathematics; 231; 6; 6-2012; 3502-35680001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0001870812003301info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2012.09.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:16:30Zoai:ri.conicet.gov.ar:11336/18932instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:16:30.675CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products |
| title |
Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products |
| spellingShingle |
Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products Carboni, Graciela Crossed Products Hochschild (Co)Homology Cyclic Homology |
| title_short |
Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products |
| title_full |
Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products |
| title_fullStr |
Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products |
| title_full_unstemmed |
Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products |
| title_sort |
Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products |
| dc.creator.none.fl_str_mv |
Carboni, Graciela Guccione, Jorge Alberto Guccione, Juan Jose Valqui, Christian |
| author |
Carboni, Graciela |
| author_facet |
Carboni, Graciela Guccione, Jorge Alberto Guccione, Juan Jose Valqui, Christian |
| author_role |
author |
| author2 |
Guccione, Jorge Alberto Guccione, Juan Jose Valqui, Christian |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Crossed Products Hochschild (Co)Homology Cyclic Homology |
| topic |
Crossed Products Hochschild (Co)Homology Cyclic Homology |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V . We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A# f V, in the sense of Brzezinski. We actually ´ work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E. Fil: Carboni, Graciela. Universidad de Buenos Aires. Ciclo Básico Común; Argentina Fil: Guccione, Jorge Alberto. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina Fil: Guccione, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina Fil: Valqui, Christian. Pontificia Universidad Catolica de Peru; Perú |
| description |
Let k be a field, A a unitary associative k-algebra and V a k-vector space endowed with a distinguished element 1V . We obtain a mixed complex, simpler than the canonical one, that gives the Hochschild, cyclic, negative and periodic homologies of a crossed product E := A# f V, in the sense of Brzezinski. We actually ´ work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A that satisfies suitable hypothesis and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homologies of E relative to K. Then, when E is a cleft braided Hopf crossed product, we obtain a simpler mixed complex, that also gives the Hochschild, cyclic, negative and periodic homologies of E. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18932 Carboni, Graciela; Guccione, Jorge Alberto; Guccione, Juan Jose; Valqui, Christian; Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products; Elsevier; Advances in Mathematics; 231; 6; 6-2012; 3502-3568 0001-8708 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/18932 |
| identifier_str_mv |
Carboni, Graciela; Guccione, Jorge Alberto; Guccione, Juan Jose; Valqui, Christian; Cyclic homology of Brzezinski’s crossed products and of braided Hopf crossed products; Elsevier; Advances in Mathematics; 231; 6; 6-2012; 3502-3568 0001-8708 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0001870812003301 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2012.09.006 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977733057937408 |
| score |
13.087074 |