Autonomous mobile robots navigation using RBF neural compensator
- Autores
- Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper presents an approach to adaptive trajectory tracking of mobile robots which combines a feedback linearization based on a nominal model and a RBF-NN adaptive dynamic compensation. For a robot with uncertain dynamic parameters,two controllers are implemented separately: a kinematics controller and an inverse dynamics controller. The uncertainty in the nominal dynamics model is compensated by a neural adaptive feedback controller. The resulting adaptive controller is efficient and robust in the sense that it succeeds to achieve a good tracking performance with a small computational effort. The analysis of the RBF-NN approximation error on the control errors is included. Finally,the performance of the control system is verified through experiments.
Fil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Adaptive inverse control
MIMO system
Mobile robot control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/246933
Ver los metadatos del registro completo
id |
CONICETDig_d0fd99514ecef774149110ea2e188517 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/246933 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Autonomous mobile robots navigation using RBF neural compensatorRossomando, Francisco GuidoSoria, Carlos MiguelCarelli Albarracin, Ricardo OscarAdaptive inverse controlMIMO systemMobile robot controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper presents an approach to adaptive trajectory tracking of mobile robots which combines a feedback linearization based on a nominal model and a RBF-NN adaptive dynamic compensation. For a robot with uncertain dynamic parameters,two controllers are implemented separately: a kinematics controller and an inverse dynamics controller. The uncertainty in the nominal dynamics model is compensated by a neural adaptive feedback controller. The resulting adaptive controller is efficient and robust in the sense that it succeeds to achieve a good tracking performance with a small computational effort. The analysis of the RBF-NN approximation error on the control errors is included. Finally,the performance of the control system is verified through experiments.Fil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaPergamon-Elsevier Science Ltd2011-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/246933Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Autonomous mobile robots navigation using RBF neural compensator; Pergamon-Elsevier Science Ltd; Control Engineering Practice; 19; 3; 3-2011; 215-2220967-0661CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0967066110002583info:eu-repo/semantics/altIdentifier/doi/10.1016/j.conengprac.2010.11.011info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:56Zoai:ri.conicet.gov.ar:11336/246933instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:57.237CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Autonomous mobile robots navigation using RBF neural compensator |
title |
Autonomous mobile robots navigation using RBF neural compensator |
spellingShingle |
Autonomous mobile robots navigation using RBF neural compensator Rossomando, Francisco Guido Adaptive inverse control MIMO system Mobile robot control |
title_short |
Autonomous mobile robots navigation using RBF neural compensator |
title_full |
Autonomous mobile robots navigation using RBF neural compensator |
title_fullStr |
Autonomous mobile robots navigation using RBF neural compensator |
title_full_unstemmed |
Autonomous mobile robots navigation using RBF neural compensator |
title_sort |
Autonomous mobile robots navigation using RBF neural compensator |
dc.creator.none.fl_str_mv |
Rossomando, Francisco Guido Soria, Carlos Miguel Carelli Albarracin, Ricardo Oscar |
author |
Rossomando, Francisco Guido |
author_facet |
Rossomando, Francisco Guido Soria, Carlos Miguel Carelli Albarracin, Ricardo Oscar |
author_role |
author |
author2 |
Soria, Carlos Miguel Carelli Albarracin, Ricardo Oscar |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Adaptive inverse control MIMO system Mobile robot control |
topic |
Adaptive inverse control MIMO system Mobile robot control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper presents an approach to adaptive trajectory tracking of mobile robots which combines a feedback linearization based on a nominal model and a RBF-NN adaptive dynamic compensation. For a robot with uncertain dynamic parameters,two controllers are implemented separately: a kinematics controller and an inverse dynamics controller. The uncertainty in the nominal dynamics model is compensated by a neural adaptive feedback controller. The resulting adaptive controller is efficient and robust in the sense that it succeeds to achieve a good tracking performance with a small computational effort. The analysis of the RBF-NN approximation error on the control errors is included. Finally,the performance of the control system is verified through experiments. Fil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
This paper presents an approach to adaptive trajectory tracking of mobile robots which combines a feedback linearization based on a nominal model and a RBF-NN adaptive dynamic compensation. For a robot with uncertain dynamic parameters,two controllers are implemented separately: a kinematics controller and an inverse dynamics controller. The uncertainty in the nominal dynamics model is compensated by a neural adaptive feedback controller. The resulting adaptive controller is efficient and robust in the sense that it succeeds to achieve a good tracking performance with a small computational effort. The analysis of the RBF-NN approximation error on the control errors is included. Finally,the performance of the control system is verified through experiments. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/246933 Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Autonomous mobile robots navigation using RBF neural compensator; Pergamon-Elsevier Science Ltd; Control Engineering Practice; 19; 3; 3-2011; 215-222 0967-0661 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/246933 |
identifier_str_mv |
Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Autonomous mobile robots navigation using RBF neural compensator; Pergamon-Elsevier Science Ltd; Control Engineering Practice; 19; 3; 3-2011; 215-222 0967-0661 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0967066110002583 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.conengprac.2010.11.011 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613231785541632 |
score |
13.070432 |